Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 6

Issues

Electrotransport in the La2NiO4-based solid solutions

Vladimir A. Cherepanov
  • Corresponding author
  • Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000, Russia, Tel./Fax: +7(343)2517927
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Artem R. Gilev
  • Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Evgeny A. Kiselev
  • Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-12 | DOI: https://doi.org/10.1515/pac-2018-1001

Abstract

This work combines new and earlier obtained results on electron hole and oxygen-ion transport in the La2NiO4-based solid solutions. The effect of lanthanum substitution with Ca/Sr and nickel with Fe, Mn, Co or Cu on transport properties of La2−xAxNi1−yMeyO4+δ was analyzed and discussed at different substitution levels. Besides the changes in concentration and mobility of electron holes induced by the doping with cations of different nature, the partial transformation of Ni3+ from low-spin to high-spin state was shown to have a profound effect on transport properties of these materials leading to a notable decrease in mobility of electron holes, especially in the strontium-rich oxides. The obtained results suggested that the size factor was the main driving force behind the observed transformation of Ni3+. The oxygen-ion transport in La2−xAxNi1−yMeyO4+δ was characterized by significant surface exchange limitations, which can be reduced only at relatively high concentrations of strontium and iron, and should be taken into account while evaluating the ionic conductivity by means of oxygen permeation or the modified Hebb-Wagner polarization method.

Keywords: HTMC-XVI; ionic conductivity; mobility; spin state; surface exchange limitations; total conductivity

Article note

A collection of invited papers based on presentations at the 16th International IUPAC Conference on High Temperature Chemistry (HTMC-XVI), held in Ekaterinburg, Russia, July 2–6, 2018.

References

  • [1]

    J. P. Tang, R. I. Dass, A. Manthiram. Mat. Res. Bull. 35, 411 (2000).CrossrefGoogle Scholar

  • [2]

    V. V. Kharton, A. V. Kovalevsky, M. Avdeev, E. V. Tsipis, M. V. Patrakeev, A. A. Yaremchenko, E. N. Naumovich, J. R. Frade. Chem. Mater. 19, 2027 (2007).CrossrefGoogle Scholar

  • [3]

    E. V. Tsipis, V. V. Kharton. J. Solid State Electrochem. 12, 1367 (2008).CrossrefGoogle Scholar

  • [4]

    A. Aguadero, M. J. Escudero, M. Pérez, J. A. Alonso, V. Pomjakushin, L. Daza. Dalton Trans. 4377 (2006).Google Scholar

  • [5]

    A. R. Gilev, E. A. Kiselev, V. A. Cherepanov. RSC Adv. 6, 72905 (2016).CrossrefGoogle Scholar

  • [6]

    J. A. Kilner, C. K. M. Shaw. Solid State Ionics. 154–155, 523 (2002).Google Scholar

  • [7]

    T. Klande, K. Efmov, S. Cusenza, K.-D. Becker, A. Feldhoff. J. Solid State Chem. 184, 3310 (2011).CrossrefGoogle Scholar

  • [8]

    R. Benloucif, N. Nguyen, J. M. Greneche, B. Raveau. J. Phys. Chem. Solids. 52, 381 (1991).CrossrefGoogle Scholar

  • [9]

    T. Inprasit, S. Wongkasemjit, S. J. Skinner, M. Burriel, P. Limthongkul. RSC Adv. 5, 2486 (2015).CrossrefGoogle Scholar

  • [10]

    Y. Shen, H. Zhao, X. Liu, N. Xu. Phys. Chem. Chem. Phys. 12, 15124 (2010).CrossrefGoogle Scholar

  • [11]

    T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki. Solid State Ionics. 180, 368 (2009).CrossrefGoogle Scholar

  • [12]

    Y. Takeda, R. Kanno, M. Sakano, O. Yamamoto. Mat. Res. Bull. 25, 293 (1990).CrossrefGoogle Scholar

  • [13]

    T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki. Phys. Chem. Chem. Phys. 11, 3055 (2009).CrossrefGoogle Scholar

  • [14]

    H.-S. Kim, H.-I. Yoo. Phys. Chem. Chem. Phys. 16, 16595 (2014).CrossrefGoogle Scholar

  • [15]

    V. V. Kharton, E. V. Tsipis, E. N. Naumovich, A. Thursfield, M. V. Patrakeev, V. A. Kolotygin, J. C. Waerenborgh, I. S. Metcalfe. J. Solid State Chem. 181, 1425 (2008).CrossrefGoogle Scholar

  • [16]

    V. V. Kharton, A. P. Viskup, E. N. Naumovich, F. M. B. Marques. J. Mater. Chem. 9, 2623 (1999).CrossrefGoogle Scholar

  • [17]

    S. Nishiyama, D. Sakaguchi, T. Hattori. Solid State Commun. 94, 279 (1995).CrossrefGoogle Scholar

  • [18]

    A. Aguadero, J. A. Alonso, M. J. Escudero, L. Daza. Solid State Ionics. 179, 393 (2008).CrossrefGoogle Scholar

  • [19]

    S. J. Skinner, J. A. Kilner. Solid State Ionics. 135, 709 (2000).CrossrefGoogle Scholar

  • [20]

    Z. Li, R. Haugsrud, T. Norby. Solid State Ionics. 184, 42 (2011).CrossrefGoogle Scholar

  • [21]

    E. N. Naumovich, V. V. Kharton. J. Mol. Struc.-Theochem. 946, 57 (2010).CrossrefGoogle Scholar

  • [22]

    J. M. Bassat, F. Gervais, R. Odier, J. P. Loup. Mater. Sci. Eng., B. 3, 507 (1989).CrossrefGoogle Scholar

  • [23]

    J. M. Bassat, P. Odier, A. Villesuzanne, C. Marin, M. Pouchard. Solid State Ionics. 167, 341 (2004).CrossrefGoogle Scholar

  • [24]

    L. Minervini, R. W. Grimes, J. A. Kilner, K. E. Sickafus. J. Mater. Chem. 10, 2349 (2000).CrossrefGoogle Scholar

  • [25]

    J. M. Bassat, P. Odier, J. P. Loup. J. Solid State Chem. 110, 124 (1994).CrossrefGoogle Scholar

  • [26]

    A. R. Gilev, E. A. Kiselev, D. M. Zakharov, V. A. Cherepanov. J Alloy. Compd. 753, 491 (2018).CrossrefGoogle Scholar

  • [27]

    A. R. Gilev, E. A. Kiselev, D. M. Zakharov, V. A. Cherepanov. Solid State Sci. 72, 134 (2017).CrossrefGoogle Scholar

  • [28]

    L. Y. Gavrilova, T. V. Aksenova, L. A. Bannykh, Y. V. Teslenko, V. A. Cherepanov. J. Struct. Chem. 44, 248 (2003).CrossrefGoogle Scholar

  • [29]

    A. R. Gilev, E. A. Kiselev, V. A. Cherepanov. Solid State Ionics. 279, 53 (2015).CrossrefGoogle Scholar

  • [30]

    A. R. Gilev, E. A. Kiselev, V. A. Cherepanov. J. Mater. Chem. A. 6, 5304 (2018).CrossrefGoogle Scholar

  • [31]

    F. A. Kröger. The Chemistry of Imperfect Crystals, Vol. 2: 2nd Revised ed., North-Holland Publishing Company, Netherlands (1974).Google Scholar

  • [32]

    I. G. Austin, N. F. Mott. Adv. Phys. 18, 41 (1969).CrossrefGoogle Scholar

  • [33]

    Y. Moritomo, K. Higashi, K. Matsuda, A. Nakamura. Phys. Rev. B. 55, R14725 (1997).CrossrefGoogle Scholar

  • [34]

    H. Wu. Phys. Rev. B. 81, 115127 (2010).CrossrefGoogle Scholar

  • [35]

    H.-S. Kim, H.-I. Yoo. Phys. Chem. Chem. Phys. 16, 16595 (2014).CrossrefGoogle Scholar

  • [36]

    S. Wang, K. Li, Z. Chen, Y. Zhang. Phys. Rev. B. 61, 575 (2000).CrossrefGoogle Scholar

  • [37]

    M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, D. B. Chirsey. Phys. Rev. B. 54, 11914 (1996).CrossrefGoogle Scholar

  • [38]

    R. D. Shannon. Acta Cryst. A32, 751 (1976).Google Scholar

  • [39]

    M. Khairy, P. Odier, J. Choisnet. J. Phys. Colloques. 47, C1-831 (1986).Google Scholar

  • [40]

    I. P. Marozau, V. V. Kharton, A. P. Viskup, J. R. Frade, V. V. Samakhval. J. Eur. Ceram. Soc. 26, 1371 (2006).CrossrefGoogle Scholar

About the article

Published Online: 2019-04-12

Published in Print: 2019-06-26


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 6, Pages 911–922, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-1001.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in