Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 6

Issues

Controlled allylation of polyelectrolytes: a deep insight into chemical aspects and their applicability as building blocks for robust multilayer coatings

Thi-Thanh-Tam Nguyen
  • Corresponding author
  • Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sabrina Belbekhouche
  • Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rémi Auvergne
  • ICGM, UMR 5253 – CNRS, Université de Montpellier, ENSCM, 240 Avenue Emile Jeanbrau, 34296 Montpellier, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin Carbonnier
  • Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Grande
  • Corresponding author
  • Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-27 | DOI: https://doi.org/10.1515/pac-2018-1104

Abstract

Polyelectrolytes (PEs) bearing easily derivatizable functions for possible post-modification under mild conditions can find a broad range of applications in various fields. The present paper describes the successful controlled side-chain allylation of two types of PEs: polyamine-based polycations, i.e. poly(allylamine hydrochloride) (PAH) and branched polyethyleneimine (PEI), and strong polyanions, i.e. poly(sodium vinyl sulfonate) (PVS) and poly(sodium 4-styrene sulfonate) (PSS). PSS has been largely investigated in the literature, while PVS is much less commonly explored. The allylation of each type presents its own drawback, i.e. heterogeneous reaction in the case of strong polyanions and instability of partially protonated allylated polyamine products. Nevertheless, all encountered difficulties could be solved and thoroughly elucidated by different experimental tests. This partial allyl-functionalization does not affect the electrolytic properties of the newly allylated PEs, as evidenced by the effective construction of two series of polyelectrolyte multilayer (PEM) films, namely PEI-ene (PSS-ene/PAH-ene)4 and PEI-ene (PVS-ene/PAH-ene)4, the latter being one of the rare examples developed in the literature. The presence of allyl groups on the PE side-chains allows for the stabilization of the resulting PEM films via thiol-ene photo-crosslinking in the presence of a water-soluble dithiol crosslinker. In order to fix permanently the resulting crosslinked PEM films on substrates, the covalent crosslinking occurs not only between different C=C bonds on PE layers but also with those present on substrates preliminarily functionalized with allyl groups via sulfur–gold chemistry. The robustness of both resulting crosslinked PEM films under strongly basic solution (pH 14) is validated by Quartz Crystal Microbalance (QCM) measurements. The versatility and effectiveness of the present approach is expected to find potential applications in different scientific and technological fields.

This article offers supplementary material which is provided at the end of the article.

Keywords: allylation; covalent crosslinking; hydroamination; Layer-by-Layer (LbL) assembly; POC-17; polyelectrolyte; strong polyanion

Article note

A collection of papers presented at the 17th Polymers and Organic Chemistry (POC-17) conference held 4–7 June 2018 in Le Corum, Montpelier, France.

References

  • [1]

    S. Llamas, E. Guzmán, F. Ortega, N. Baghdadli, C. Cazeneuve, R. G. Rubio, G. S. Luengo. Adv. Colloid Interface Sci. 222, 461 (2015).CrossrefGoogle Scholar

  • [2]

    O. Akhlaghi, Y. Z. Menceloglu, O. Akbulut. Sci. Rep. 7, 41743 (2017).CrossrefGoogle Scholar

  • [3]

    H. J. Kong, S. G. Bike, V. C. Li. Cement Concrete Res. 36, 851 (2006).CrossrefGoogle Scholar

  • [4]

    D. J. Miller, D. R. Dreyer, C. W. Bielawski, D. R. Paul, B. D. Freeman. Angew. Chem. Int. Ed. 56, 4662 (2017).CrossrefGoogle Scholar

  • [5]

    N. Shahkaramipour, T. Tran, S. Ramanan, H. Lin. Membranes 7, 13 (2017).CrossrefGoogle Scholar

  • [6]

    S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, T. Maruyama, H. Matsuyama. J. Membr. Sci. 417–418, 137 (2012).Google Scholar

  • [7]

    S. L. Patwekar, A. P. Potulwar, S. R. Pedewad, M. S. Gaikwad, S. A. Khan, A. B. Suryawanshi. Int. J. Pharm. Pharm. Res. Human 5, 97 (2016).Google Scholar

  • [8]

    M. Siyawamwaya, Y. E. Choonara, D. Bijukumar, P. Kumar, L. C. Du Toit, V. Pillay. Int. J. Polym. Mater. Polym. Biomater. 64, 955 (2015).CrossrefGoogle Scholar

  • [9]

    M. Zhao, L. Li, C. Zhou, F. Heyroth, B. Fuhrmann, K. Maeder, T. Groth. Biomacromolecules 15, 4272 (2014).CrossrefGoogle Scholar

  • [10]

    H. J. Kwon. Adv. Mater. Sci. Eng. 2014, 7 (2014).Google Scholar

  • [11]

    H. J. Kwon, K. Yasuda, J. P. Gong, Y. Ohmiya. Macromol. Res. 22, 227 (2014).CrossrefGoogle Scholar

  • [12]

    I. M. El-Sherbiny, M. H. Yacoub. Glob. Cardiol. Sci. Pract. 2013, 38 (2013).CrossrefGoogle Scholar

  • [13]

    W. Lee, J. H. Seo, H. Y. Woo. Polymer 54, 5104 (2013).CrossrefGoogle Scholar

  • [14]

    G. Decher. Science 277, 1232 (1997).CrossrefGoogle Scholar

  • [15]

    H. Rammal, C. Harmouch, C. Maerten, C. Gaucher, F. Boulmedais, P. Schaaf, J. C. Voegel, D. Laurent-Maquin, P. Menu, H. Kerdjoudj. J. Biomed. Mater. Res. A 105, 292 (2017).CrossrefGoogle Scholar

  • [16]

    C. Vigier-Carriere, T. Garnier, D. Wagner, P. Lavalle, M. Rabineau, J. Hemmerle, B. Senger, P. Schaaf, F. Boulmedais, L. Jierry. Angew. Chem. Int. Ed. 54, 10198 (2015).CrossrefGoogle Scholar

  • [17]

    Z. Liu, L. Bai, G. Zhao, Y. Liu. Beilstein J. Nanotechnol. 7, 1028 (2016).CrossrefGoogle Scholar

  • [18]

    J. Borges, J. F. Mano. Chem. Rev. 114, 8883 (2014).CrossrefGoogle Scholar

  • [19]

    S. T. Dubas, J. B. Schlenoff. Macromolecules 34, 3736 (2001).CrossrefGoogle Scholar

  • [20]

    G. Rydzek, P. Schaaf, J.-C. Voegel, L. Jierry, F. Boulmedais. Soft Matter 8, 9738 (2012).CrossrefGoogle Scholar

  • [21]

    Y. Tian, Q. He, C. Tao, J. Li. Langmuir 22, 360 (2006).CrossrefGoogle Scholar

  • [22]

    Y. Hu, Y. Ding, D. Ding, M. Sun, L. Zhang, X. Jiang, C. Yang. Biomacromolecules 8, 1069 (2007).CrossrefGoogle Scholar

  • [23]

    L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.-C. Voegel, C. Picart. Biomacromolecules 5, 284 (2004).CrossrefGoogle Scholar

  • [24]

    C. Picart, R. Elkaim, L. Richert, F. Audoin, Y. Arntz, M. DaSilvaCardoso, P. Schaaf, J. C. Voegel, B. Frisch. Adv. Funct. Mater. 15, 83 (2005).CrossrefGoogle Scholar

  • [25]

    G. V. Martins, E. G. Merino, J. F. Mano, N. M. Alves. Macromol. Biosci. 10, 1444 (2010).CrossrefGoogle Scholar

  • [26]

    J. J. Harris, P. M. DeRose, M. L. Bruening. J. Am. Chem. Soc. 121, 1978 (1999).CrossrefGoogle Scholar

  • [27]

    L. A. Connal, C. R. Kinnane, A. N. Zelikin, F. Caruso. Chem. Mater. 21, 576 (2009).CrossrefGoogle Scholar

  • [28]

    V. Calcagno, R. Vecchione, A. Sagliano, A. Carella, D. Guarnieri, V. Belli, L. Raiola, A. Roviello, P. A. Netti. Colloids Surf. B Biointerfaces 142, 281 (2016).CrossrefGoogle Scholar

  • [29]

    G. K. Such, J. F. Quinn, A. Quinn, E. Tjipto, F. Caruso. J. Am. Chem. Soc. 128, 9318 (2006).CrossrefGoogle Scholar

  • [30]

    J. Niu, F. Shi, Z. Liu, Z. Wang, X. Zhang. Langmuir 23, 6377 (2007).CrossrefGoogle Scholar

  • [31]

    N. Rokhati, T. Istirokhatun, A. M. Samsudin. Int. J. Renew. Energy Development 5, 6 (2016).Google Scholar

  • [32]

    S. Dawlee, A. Sugandhi, B. Balakrishnan, D. Labarre, A. Jayakrishnan. Biomacromolecules 6, 2040 (2005).CrossrefGoogle Scholar

  • [33]

    Q. An, K. Nie, Y. Zhang, Y. Wang, Y. Hu, V. Dutschk, X. Luan. Soft Matter. 11, 6859 (2015).CrossrefGoogle Scholar

  • [34]

    Y. Song, K. P. Meyers, J. Gerringer, R. K. Ramakrishnan, M. Humood, S. Qin, A. A. Polycarpou, S. Nazarenko, J. C. Grunlan. Macromol. Rapid Commun. 38, 1700064 (2017).CrossrefGoogle Scholar

  • [35]

    J. Davila, A. Chassepot, J. Longo, F. Boulmedais, A. Reisch, B. Frisch, F. Meyer, J.-C. Voegel, P. J. Mésini, B. Senger, M.-H. Metz-Boutigue, J. Hemmerlé, P. Lavalle, P. Schaaf, L. Jierry. J. Am. Chem. Soc. 134, 83 (2012).CrossrefGoogle Scholar

  • [36]

    N. Madaan, N. Romriell, J. Tuscano, H. Schlaad, M. R. Linford. J. Colloid Interface Sci. 459, 199 (2015).CrossrefGoogle Scholar

  • [37]

    A. Saydjari, J. P. Long, W. J. Dressick, B. S. Simpkins. Chem. Phys. Lett. 608, 328 (2014).CrossrefGoogle Scholar

  • [38]

    A. Reisch, J.-C. Voegel, E. Gonthier, G. Decher, B. Senger, P. Schaaf, P. J. Mésini. Langmuir 25, 3610 (2009).CrossrefGoogle Scholar

  • [39]

    T.-T.-T. Nguyen, S. Belbekhouche, P. Dubot, B. Carbonnier, D. Grande. J. Mater. Chem. A 5, 24472 (2017).CrossrefGoogle Scholar

  • [40]

    H. Jin, J. Nam, J. Park, S. Jung, K. Im, J. Hur, J.-J. Park, J.-M. Kim, S. Kim. Chem. Commun. 47, 1758 (2011).CrossrefGoogle Scholar

  • [41]

    J. de Grooth, B. Haakmeester, C. Wever, J. Potreck, W. M. de Vos, K. Nijmeijer. J. Membrane Sci. 489, 153 (2015).CrossrefGoogle Scholar

  • [42]

    M. E. Tagliazucchi, E. J. Calvo. J. Electroanal. Chem. 599, 249 (2007).CrossrefGoogle Scholar

  • [43]

    F. Ji, Y. Zhang, Y. Geng, Y. Zong, L. Wang. Chem. Res. Chin. U. 32, 493 (2016).CrossrefGoogle Scholar

  • [44]

    T. H. Nguyen, S. J. Paluck, A. J. McGahran, H. D. Maynard. Biomacromolecules 16, 2684 (2015).CrossrefGoogle Scholar

  • [45]

    P. Esmaeilzadeh, A. Köwitsch, F. Heyroth, G. Schmidt, S. Fischer, K. Richter, T. Groth. Carbohydr. Polym. 157, 1205 (2017).CrossrefGoogle Scholar

  • [46]

    K. Yoshida, T. Ono, Y. Kashiwagi, S. Takahashi, K. Sato, J.-I. Anzai. Polymers 7, 1269 (2015).CrossrefGoogle Scholar

  • [47]

    E. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat, M. H. Fonticelli, G. Benítez, A. A. Rubert, R. C. Salvarezza. Acc. Chem. Res. 45, 1183 (2012).CrossrefGoogle Scholar

  • [48]

    S. S. Shiratori, M. F. Rubner. Macromolecules 33, 4213 (2000).CrossrefGoogle Scholar

About the article

Published Online: 2019-05-27

Published in Print: 2019-06-26


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 6, Pages 983–995, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-1104.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in