Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 87, Issue 8

Issues

Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks

Elise DeSimone
  • Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kristin Schacht
  • Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Jungst
  • Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universität Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgen Groll
  • Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universität Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Scheibel
  • Corresponding author
  • Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
  • Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
  • Institut für Bio-Makromoleküle (bio-mac), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
  • Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
  • Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-01 | DOI: https://doi.org/10.1515/pac-2015-0106

Abstract

Despite significant investment in tissue engineering over the past 20 years, few tissue engineered products have made it to market. One of the reasons is the poor control over the 3D arrangement of the scaffold’s components. Biofabrication is a new field of research that exploits 3D printing technologies with high spatial resolution for the simultaneous processing of cells and biomaterials into 3D constructs suitable for tissue engineering. Cell-encapsulating biomaterials used in 3D bioprinting are referred to as bioinks. This review consists of: (1) an introduction of biofabrication, (2) an introduction of 3D bioprinting, (3) the requirements of bioinks, (4) existing bioinks, and (5) a specific example of a recombinant spider silk bioink. The recombinant spider silk bioink will be used as an example because its unmodified hydrogel format fits the basic requirements of bioinks: to be printable and at the same time cytocompatible. The bioink exhibited both cytocompatible (self-assembly, high cell viability) and printable (injectable, shear-thinning, high shape fidelity) qualities. Although improvements can be made, it is clear from this system that, with the appropriate bioink, many of the existing faults in tissue-like structures produced by 3D bioprinting can be minimized.

Keywords: biofabrication; bioink; biomaterials; biomedical applications; 3D bioprinting; biotechnology; NICE-2014; spider silk

Article note:

A collection of invited papers based on presentations at the 2nd International Conference on Bioinspired and Biobased Chemistry and Materials: Nature Inspires Chemical Engineers (NICE-2014), Nice, France, 15–17 October 2014.

References

  • [1]

    R. G. Harrison, M. J. Greenman, F. P. Mall, C. M. Jackson. Anat. Rec. 1, 116 (1907).Google Scholar

  • [2]

    R. Langer, J. P. Vacanti. Science 260, 920 (1993).Google Scholar

  • [3]

    T. Aberle, K. Franke, E. Rist, K. Benz, B. Schlosshauer. PLoS One 9, e86740 (2014).Google Scholar

  • [4]

    M. A. Lancaster, J. A. Knoblich. Nat. Protoc. 9, 2329 (2014).CrossrefGoogle Scholar

  • [5]

    A. Bozkurt, F. Gilmour R Jr., A. Lal. IEEE Trans. Biomed. Eng. 56, 2304 (2009).CrossrefGoogle Scholar

  • [6]

    M. J. Post. Meat Sci. 92, 297 (2012).Google Scholar

  • [7]

    J. H. Shim, S. E. Kim, J. Y. Park, J. Kundu, S. W. Kim, S. S. Kang, D. W. Cho. Tissue Eng. Part A 20, 1980 (2014).CrossrefGoogle Scholar

  • [8]

    J. J. Mancuso, J. Cheng, Z. Yin, J. C. Gilliam, X. Xia, X. Li, S. T. Wong. Front. Neuroanat. 8, 130 (2014).Google Scholar

  • [9]

    A. Wittinghofer, I. R. Vetter. Annu. Rev. Biochem. 80, 943 (2011).CrossrefGoogle Scholar

  • [10]

    D. D. Allison, K. R. Braun, T. N. Wight, K. J. Grande-Allen. Acta Biomater. 5, 1019 (2009).CrossrefGoogle Scholar

  • [11]

    M. D. Tang-Schomer, J. D. White, L. W. Tien, L. I. Schmitt, T. M. Valentin, D. J. Graziano, A. M. Hopkins, F. G. Omenetto, P. G. Haydon, D. L. Kaplan. Proc. Natl. Acad. Sci. USA 111, 13811 (2014).Google Scholar

  • [12]

    V. A. Kasyanov, J. Hodde, M. C. Hiles, C. Eisenberg, L. Eisenberg, L. E. De Castro, I. Ozolanta, M. Murovska, R. A. Draughn, G. D. Prestwich, R. R. Markwald, V. Mironov. J. Mater. Sci. Mater. Med. 20, 329 (2009).CrossrefGoogle Scholar

  • [13]

    D. R. Albrecht, R. L. Sah, S. N. Bhatia. Biophys. J. 87, 2131 (2004).Google Scholar

  • [14]

    A. Ito, K. Ino, M. Hayashida, T. Kobayashi, H. Matsunuma, H. Kagami, M. Ueda, H. Honda. Tissue Eng. 11, 1553 (2005).Google Scholar

  • [15]

    G. Y. Huang, L. H. Zhou, Q. C. Zhang, Y. M. Chen, W. Sun, F. Xu, T. J. Lu. Biofabrication 3, 012001 (2011).Google Scholar

  • [16]

    Y. Ling, J. Rubin, Y. Deng, C. Huang, U. Demirci, J. M. Karp, A. Khademhosseini. Lab. Chip. 7, 756 (2007).CrossrefGoogle Scholar

  • [17]

    I. Elloumi-Hannachi, M. Yamato, T. Okano. J. Intern. Med. 267, 54 (2010).Google Scholar

  • [18]

    A. Abeyewickreme, A. Kwok, J. R. McEwan, S. N. Jayasinghe. Integr. Biol. 1, 260 (2009).Google Scholar

  • [19]

    N. K. Pakes, S. N. Jayasinghe, R. S. Williams. J. R. Soc., Interface 8, 1185 (2011).Google Scholar

  • [20]

    S. Das, F. Pati, Y.-J. Choi, G. Rijal, J.-H. Shim, S. W. Kim, A. R. Ray, D.-W. Cho, S. Ghosh. Acta Biomater. 11, 233 (2014).CrossrefGoogle Scholar

  • [21]

    L. Koch, M. Gruene, C. Unger, B. Chichkov. Curr. Pharm. Biotechnol. 14, 91 (2013).Google Scholar

  • [22]

    T. Xu, C. A. Gregory, P. Molnar, X. Cui, S. Jalota, S. B. Bhaduri, T. Boland. Biomaterials 27, 3580 (2006).Google Scholar

  • [23]

    P. Bajaj, R. M. Schweller, A. Khademhosseini, J. L. West, R. Bashir. Annu. Rev. Biomed. Eng. 16, 247 (2014).CrossrefGoogle Scholar

  • [24]

    V. Mironov, T. Trusk, V. Kasyanov, S. Little, R. Swaja, R. Markwald. Biofabrication 1, 022001 (2009).Google Scholar

  • [25]

    C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, M. Edirisinghe. Chem. Soc. Rev. 41, 4708 (2012).CrossrefGoogle Scholar

  • [26]

    S. V. Murphy, A. Atala. Nat. Biotechnol. 32, 773 (2014).CrossrefGoogle Scholar

  • [27]

    J. S. Miller. PLoS Biol. 12, e1001882 (2014).Google Scholar

  • [28]

    A. Pfister, R. Landers, A. Laib, U. Hubner, R. Schmelzeisen, R. Mulhaupt. J. Polym. Sci., Part A: Polym. Chem. 42, 624 (2004).CrossrefGoogle Scholar

  • [29]

    J. Malda, J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. A. Dhert, J. Groll, D. W. Hutmacher. Adv. Mater. 25, 5011 (2013).Google Scholar

  • [30]

    R. Nayaran, Ed. Rapid Prototyping of Biomaterials: Principles and Applications. Woodhead Publishing, Philadelphia (2014).Google Scholar

  • [31]

    L. A. Hockaday, K. H. Kang, N. W. Colangelo, P. Y. Cheung, B. Duan, E. Malone, J. Wu, L. N. Girardi, L. J. Bonassar, H. Lipson, C. C. Chu, J. T. Butcher. Biofabrication 4, 035005 (2012).Google Scholar

  • [32]

    S. Moon, S. K. Hasan, Y. S. Song, F. Xu, H. O. Keles, F. Manzur, S. Mikkilineni, J. W. Hong, J. Nagatomi, E. Haeggstrom, A. Khademhosseini, U. Demirci. Tissue Eng., Part C 16, 157 (2010).CrossrefGoogle Scholar

  • [33]

    M. Duocastella, J. M. Fernandez-Pradas, P. Serra, J. L. Morenza. Appl. Phys. A: Mater. Sci. Process. 93, 453 (2008).CrossrefGoogle Scholar

  • [34]

    C. Mézel, L. Hallo, A. Souquet, J. Breil, D. Hebert, F. Guillemot. Phys. Plasmas 16, 123112 (2009).Google Scholar

  • [35]

    C. J. Ferris, K. G. Gilmore, G. G. Wallace, M. I. H. Panhuis. Appl. Microbiol. Biotechnol. 97, 4243 (2013).CrossrefGoogle Scholar

  • [36]

    S. Catros, B. Guillotin, M. Bacakova, J. C. Fricain, F. Guillemot. Appl. Surf. Sci. 257, 5142 (2011).Google Scholar

  • [37]

    R. Cornock, S. Beirne, B. Thompson, G. G. Wallace. Biofabrication 6, 025002 (2014).Google Scholar

  • [38]

    I. T. Ozbolat, H. Chen, Y. Yu. Robotics and Computer-Integrated Manufacturing 30, 295 (2014).CrossrefGoogle Scholar

  • [39]

    J. N. H. Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, R. G. Nuzzo. Adv. Funct. Mater. 21, 47 (2011).Google Scholar

  • [40]

    K. Schacht, T. Jüngst, M. Schweinlin, A. Ewald, J. Groll, T. Scheibel. Angew. Chem., Int. Ed. 54, 2816 (2015).Google Scholar

  • [41]

    Q. L. Loh, C. Choong. Tissue Eng. Part B, Rev. 19, 485 (2013).CrossrefGoogle Scholar

  • [42]

    J. Jia, D. J. Richards, S. Pollard, Y. Tan, J. Rodriguez, R. P. Visconti, T. C. Trusk, M. J. Yost, H. Yao, R. R. Markwald, Y. Mei. Acta Biomater. 10, 4323 (2014).Google Scholar

  • [43]

    N. E. Fedorovich, J. Alblas, J. R. de Wijn, W. E. Hennink, A. J. Verbout, W. J. A. Dhert. Tissue Eng. 13, 1905 (2007).Google Scholar

  • [44]

    B. Derby. Science 338, 921 (2012).Google Scholar

  • [45]

    B. S. Kim, D. J. Mooney. Trends Biotechnol. 16, 224 (1998).CrossrefGoogle Scholar

  • [46]

    N. E. Fedorovich, W. Schuurman, H. M. Wijnberg, H. J. Prins, P. R. van Weeren, J. Malda, J. Alblas, W. J. A. Dhert. Tissue Eng., Part C 18, 33 (2012).Google Scholar

  • [47]

    J. C. Schense, J. A. Hubbell. Bioconjug. Chem. 10, 75 (1999).Google Scholar

  • [48]

    C. L. Cummings, D. Gawlitta, R. M. Nerem, J. P. Stegemann. Biomaterials 25, 3699 (2004).CrossrefGoogle Scholar

  • [49]

    W. Xu, X. Wang, Y. Yan, W. Zheng, Z. Xiong, F. Lin, R. Wu, R. Zhang. J. Bioact. Compat. Polym. 22, 363 (2007).Google Scholar

  • [50]

    X. Wang, Y. Yan, R. Zhang. Tissue Eng. Part B, Rev. 16, 189 (2010).CrossrefGoogle Scholar

  • [51]

    C. M. Smith, A. L. Stone, R. L. Parkhill, R. L. Stewart, M. W. Simpkins, A. M. Kachurin, W. L. Warren, S. K. Williams. Tissue Eng. 10, 1566 (2004).Google Scholar

  • [52]

    R. Parenteau-Bareil, R. Gauvin, F. Berthod. Materials 3, 1863 (2010).Google Scholar

  • [53]

    U. Hersel, C. Dahmen, H. Kessler. Biomaterials 24, 4385 (2003).CrossrefGoogle Scholar

  • [54]

    E. Hoch, T. Hirth, G. E. M. Tovar, K. Borchers. J. Mater. Chem. B 1, 5675 (2013).Google Scholar

  • [55]

    W. Schuurman, P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, D. W. Hutmacher, F. P. W. Melchels, T. J. Klein, J. Malda. Macromol. Biosci. 13, 551 (2013).Google Scholar

  • [56]

    E. Hoch, C. Schuh, T. Hirth, G. E. M. Tovar, K. Borchers. J. Mater. Sci. Mater. Med. 23, 2607 (2012).CrossrefGoogle Scholar

  • [57]

    S. Das, F. Pati, S. Chameettachal, S. Pahwa, A. R. Ray, S. Dhara, S. Ghosh. Biomacromolecules 14, 311 (2013).CrossrefGoogle Scholar

  • [58]

    S. Wust, M. E. Godla, R. Muller, S. Hofmann. Acta Biomater. 10, 630 (2014).Google Scholar

  • [59]

    F. P. W. Melchels, W. J. A. Dhert, D. W. Hutmacher, J. Malda. J. Mater. Chem. B 2, 2282 (2014).CrossrefGoogle Scholar

  • [60]

    R. Levato, J. Visser, J. A. Planell, E. Engel, J. Malda, M. A. Mateos-Timoneda. Biofabrication 6, 035020 (2014).Google Scholar

  • [61]

    X. F. Cui, K. Breitenkamp, M. G. Finn, M. Lotz, D. D. D’Lima. Tissue Eng. Part A 18, 1304 (2012).Google Scholar

  • [62]

    R. Censi, W. Schuurman, J. Malda, G. di Dato, P. E. Burgisser, W. J. A. Dhert, C. F. van Nostrum, P. di Martino, T. Vermonden, W. E. Hennink. Adv. Funct. Mater. 21, 1833 (2011).Google Scholar

  • [63]

    M. Kesti, M. Muller, J. Becher, M. Schnabelrauch, M. D’Este, D. Eglin, M. Zenobi-Wong. Acta Biomater. 11, 162 (2015).CrossrefGoogle Scholar

  • [64]

    K. Y. Lee, D. J. Mooney. Prog. Polym. Sci. 37, 106 (2012).Google Scholar

  • [65]

    P. Kesari, T. Xu, T. Boland. Mater. Res. Soc. Symp. Proc. 845, 111 (2005).Google Scholar

  • [66]

    X. F. Cui, T. Boland. Biomaterials 30, 6221 (2009).CrossrefGoogle Scholar

  • [67]

    J. Visser, B. Peters, T. J. Burger, J. Boomstra, W. J. A. Dhert, F. P. W. Melchels, J. Malda. Biofabrication 5, 035007 (2013).Google Scholar

  • [68]

    G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. S. Chen, H. Lu, J. Richmond, D. L. Kaplan. Biomaterials 24, 401 (2003).CrossrefGoogle Scholar

  • [69]

    A. Leal-Egaña, T. Scheibel. Biotechnol. Appl. Biochem. 55, 155 (2010).CrossrefGoogle Scholar

  • [70]

    K. Schacht, T. Scheibel. Curr. Opin. Biotechnol. 29, 62 (2014).Google Scholar

  • [71]

    P. H. Zeplin, N. C. Maksimovikj, M. C. Jordan, J. Nickel, G. Lang, A. H. Leimer, L. Roemer, T. Scheibel. Adv. Funct. Mater. 24, 2658 (2014).CrossrefGoogle Scholar

  • [72]

    P. H. Zeplin, A.-K. Berninger, N. C. Maksimovikj, P. van Gelder, T. Scheibel, H. Walles. Handchir. Mikrochir. Plast. Chir. 46, 336 (2014).Google Scholar

  • [73]

    H. Mori, M. Tsukada. J. Biotechnol. 74, 95 (2000).Google Scholar

  • [74]

    Y. Q. Zhang, W. D. Shen, R. A. Gu, J. Zhu, R. Y. Xue. Anal. Chim. Acta 369, 123 (1998).Google Scholar

  • [75]

    I. Drachuk, O. Shchepelina, S. Harbaugh, N. Kelley-Loughnane, M. Stone, V. V. Tsukruk. Small 9, 3128 (2013).CrossrefGoogle Scholar

  • [76]

    C. Blum, A. Nichtl, T. Scheibel. Adv. Funct. Mater. 24, 763 (2014).CrossrefGoogle Scholar

  • [77]

    K. Schacht, T. Scheibel. Biomacromolecules 12, 2488 (2011).CrossrefGoogle Scholar

  • [78]

    S. Wohlrab, S. Muller, A. Schmidt, S. Neubauer, H. Kessler, A. Leal-Egana, T. Scheibel. Biomaterials 33, 6650 (2012).CrossrefGoogle Scholar

  • [79]

    L. Pescosolido, W. Schuurman, J. Malda, P. Matricardi, F. Alhaique, T. Coviello, P. R. Weeren, W. J. Dhert, W. E. Hennink, T. D. Vermonden. Biomacromolecules 12, 1831 (2011).Google Scholar

  • [80]

    A. Aprhisiart, F. Vollrath. Behav. Ecol. 5, 280 (1994).Google Scholar

  • [81]

    D. Huemmerich, C. W. Helsen, S. Quedzuweit, J. Oschmann, R. Rudolph, T. Scheibel. Biochemistry-Us 43, 13604 (2004).CrossrefGoogle Scholar

  • [82]

    C. Vendrely, T. Scheibel. Macromol. Biosci. 7, 401 (2007).Google Scholar

  • [83]

    T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel. Biomaterials 35, 49 (2014).Google Scholar

About the article

Corresponding author: Thomas Scheibel, Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany, e-mail: thomas.scheibel@bm.uni-bayreuth.de; Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany; Institut für Bio-Makromoleküle (bio-mac), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany; Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany; and Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

aThe authors contributed equally to this work.


Published Online: 2015-07-01

Published in Print: 2015-08-01


Citation Information: Pure and Applied Chemistry, Volume 87, Issue 8, Pages 737–749, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2015-0106.

Export Citation

©2015 IUPAC & De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Megan K. DeBari, Mia N. Keyser, Michelle A. Bai, and Rosalyn D. Abbott
Connective Tissue Research, 2018, Page 1
[2]
Mourad Jaffar-Bandjee, Jérôme Casas, and Gijs Krijnen
Current Opinion in Insect Science, 2018
[3]
Baskaran Ganesh Kumar, Rustamzhon Melikov, Mohammad Mohammadi Aria, Aybike Ural Yalcin, Efe Begar, Sadra Sadeghi, Kaan Guven, and Sedat Nizamoglu
ACS Biomaterials Science & Engineering, 2018
[4]
Eileen S. Lintz, Christoph Neinhuis, and Thomas Scheibel
Macromolecular Materials and Engineering, 2018, Page 1700637
[5]
Shikha Chawla, Swati Midha, Aarushi Sharma, and Sourabh Ghosh
Advanced Healthcare Materials, 2018, Page 1701204
[6]
Elise DeSimone, Kristin Schacht, Alexandra Pellert, and Thomas Scheibel
Biofabrication, 2017, Volume 9, Number 4, Page 044104
[7]
Samuel Clark Ligon, Robert Liska, Jürgen Stampfl, Matthias Gurr, and Rolf Mülhaupt
Chemical Reviews, 2017, Volume 117, Number 15, Page 10212
[8]
Dirk-Jan Cornelissen, Alan Faulkner-Jones, and Wenmiao Shu
Current Opinion in Biomedical Engineering, 2017, Volume 2, Page 76
[9]
John Hardy, Jose Torres-Rendon, Aldo Leal-Egaña, Andreas Walther, Helmut Schlaad, Helmut Cölfen, and Thomas Scheibel
Materials, 2016, Volume 9, Number 7, Page 560
[10]
Elise DeSimone, Kristin Schacht, and Thomas Scheibel
Materials Letters, 2016, Volume 183, Page 101
[11]
Amit Panwar and Lay Tan
Molecules, 2016, Volume 21, Number 6, Page 685

Comments (0)

Please log in or register to comment.
Log in