Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 89, Issue 2

Issues

Polyheterocycle-carbohydrate chimeras: photoassisted synthesis of 2,5-epoxybenzoxacines and 2,5-epoxybenzazocine scaffolds and their postphotochemical hydroxylations

D. Sai Reddy / Olga A. Mukhina / W. Cole Cronk / Andrei G. Kutateladze
Published Online: 2017-01-11 | DOI: https://doi.org/10.1515/pac-2016-0915

Abstract

Photoassisted synthesis of complex polyheterocyclic molecular architectures via excited state intramolecular proton transfer (ESIPT) is for the first time implemented for the reactions of o-keto phenols. This adds the 2,5-epoxybenzoxacine core to the previously obtained 2,5-epoxybenzazocine cores and offers rapid access to primary photoproducts which lend themselves to diverse yet simple postphotochemical modifications to further grow the complexity of the target structures, specifically – access to polyheterocycle-carbohydrate chimeras containing up to five contiguous stereogenic centers and benzazocine or benzoxacine heterocyclic cores.

Keywords: epoxybenzazocine; epoxybenzoxacine; photoassisted synthesis; Photochemistry XXVI; polyheterocycle-carbohydrate chimeras

Article note:

A collection of invited papers based on presentations at the XXVIth IUPAC Symposium on Photochemistry, Osaka, Japan, April 3–8 2016.

References

  • [1]

    (a) O. A. Mukhina, N. N. B. Kumar, T. M. Arisco, R. A. Valiulin, G. A. Metzel, A. G. Kutateladze. Angew. Chem., Int. Ed. 50, 9423 (2011); (b) O. A. Mukhina, N. N. B. Kumar, T. M. Cowger, A. G. Kutateladze. J. Org. Chem. 79, 10956 (2014); (c) O. A. Mukhina, D. M. Kuznetsov, T. M. Cowger, A. G. Kutateladze. Angew. Chem. Int. Ed. 54, 11516 (2015); (d) O. A. Mukhina, A. G. Kutateladze. J. Am. Chem. Soc. 138, 2110 (2016).Google Scholar

  • [2]

    (a) W. C. Cronk, O. A. Mukhina, A. G. Kutateladze. J. Org. Chem. 79, 1235 (2014); (b) W. J. Umstead, O. A. Mukhina, A. G. Kutateladze. Eur. J. Org. Chem. 2015, 2205 (2015); (c) W. J. Umstead, O. A. Mukhina, N. N. B. Kumar, A. G. Kutateladze. Aust. J. Chem. 68, 1672 (2015).Google Scholar

  • [3]

    N. S. Nandurkar, N. N. B. Kumar, O. A. Mukhina, A. G. Kutateladze. ACS Comb. Sci. 15, 73 (2013).Google Scholar

  • [4]

    For a review, see: P. D. Bass, D. A. Gubler, T. C Judd, R. M. Williams, Chem. Rev. 113, 6816 (2013).Google Scholar

  • [5]

    S. E. Wolkenberg, D. L. Boger. Chem. Rev. 102, 2477 (2002).Google Scholar

  • [6]

    (a) M. A. Bates, P. G. Sammes. J. Chem. Soc. Chem. Commun. 1983, 896 (1983); (b) F. M. Hauser, W. P. Ellenberger, T. C. Adams, Jr., J. Org. Chem. 49, 1169 (1984); (c) F. M. Hauser, T. C. Adam, Jr., J. Org. Chem. 49, 2296 (1984); (d) R. P. Joyce, M. Parvez, S. M. Weinreb, Tetrahedron Lett. 27, 4885 (1986); (e) T. H. Smith, H. Y. Wu. J. Org. Chem. 52, 3566 (1987); (f) F. M. Hauser, W. P. Ellenberger. J. Org. Chem. 53, 1118 (1988); (g) P. DeShong, W. Li, J. W. Kennington, Jr., H. L. Ammon. J. Org. Chem. 56, 1364 (1991); (h) P. DeShong, W. Li, J. W. Kennington, Jr., H. L. Ammon. J. Org. Chem. 56, 1364 (1991); (i) K. Krohn, H. J. Köhle Liebigs. Ann. Chem. 1987, 1037 (1987); (j) M. Kawasaki, F. Matsuda, S. Terashima. Tetrahedron 44, 5713 (1988); (k) M. Kawasaki, F. Matsuda, S. Terashima. Tetrahedron 44, 5727 (1988); (l) F. M. Hauser, D. Ganguly. J. Org. Chem. 65, 1842 (2000); (m) F. Matsuda, M. Kawasaki, M, Ohsaki, K, Yamada, S. Terashima. Chem. Lett. 1988, 653 (1988); (n) M. Kawasaki, F. Matsuda, S. Terashima. Tetrahedron 44, 5695 (1988); (o) R. P. Joyce, M. Parvez, S. M. Weinreb. Tetrahedon Lett. 27, 4885 (1986); (q) K. Krohn, V. S. Ekkundi, D. Doring, P. J. Jones. Carbohyd. Chem. 17, 153 (1998); (r) K. Krohn, U. Florke, J. Keine, I. J. Terstiege. Carbohyd. Chem. 17, 171 (1998); (s) K. Krohn, I. Terstiege, U. J. Florke. Carbohyd. Chem. 17, 197 (1998); (t) Y. Htwe, R. W. Franck, S. L. Chen, G. J. Quigley, L. Todaro. J. Org. Chem. 57, 644 (1992); (u) R. Peng, M.S. VanNieuwehnze. Org. Lett. 14, 1962 (2012).Google Scholar

  • [7]

    P. F. Wiley, F.A. Mackellar, E. L. Caron, R. B. Kelly. Tetrahedron Lett. 9, 663 (1968).Google Scholar

  • [8]

    F. M. Hauser, S. CHakrapani, W. P. Ellenberger. J. Org. Chem. 56, 5248 (1991); M. A. Bates, P. G. Sammes. J. Chem. Soc. Perkin Trans. 1, 3037 (1988).Google Scholar

  • [9]

    (a) A. Rich, L. D. Williams, M. Egli, Q. Gao, P. Bash, G. A. V. D. Marel, J.H.V. Boom, C. A. Friedrick. Proc. Natl. Acad. Sci. U.S.A. 87, 2225 (1990); (b) S.P. Sim, B. Gatto, C. Yu, A. A Liu, T. K. Li, D. S. Pilch, E. J. LaVoie, L. F. Liu. Biochemistry 36, 13285 (1997); (c) Y. C. Liaw, Y. G. Gao, H. Robinson, G. A. Vandermarel, J. H. Vanboom, A. H. J. Wang. Biochemistry 28, 9913 (1989); (d) S. P. Sim, D. S. Pilch, L. F. Liu, Biochemistry 39, 9928 (2000).Google Scholar

  • [10]

    (a) S. K. Ketones, G. K. Sarkar, R. A. A. U. Weragoda, A. D. Ranaweera, Gudmundsdottir. J. Phys. Chem. B. 119, 2668 (2015); (b) A. Deperasinska, M. Makarewicz, D. T. Krzeszewski, B. Gryko, Kozankiewicz. J. Phys. Chem. 119, 9051 (2015); (c) M. H. Van Benthem, G. D. Gillispie. J. Phys. Chem. 88, 2954 (1984); (d) S. R. Flom, P. F. Barbara. J. Phys. Chem. 89, 4489 (1985).Google Scholar

  • [11]

    (a) J. Esters, Catalán. Phys. Chem. Chem. Phys. 14, 8903 (2012); (b) J. Catalán J. Phys, Chem. B. 119, 2132 (2015); (c) P. Zhou, M. R. Hoffmann, G. He, J. Phys. Chem. B. 119, 2125 (2015).Google Scholar

  • [12]

    (a) P. F. Imines, L. E. Barbara, P. M. Brus, Rentzepis J. Am. Chem. Soc. 102, 2786 (1980); (b) K. Ding, S. H. A. J. Courtney, S. Stranjord, D. Flom, P. F. Friedrich Barbara. J. Phys. Chem. 87, 1125 (1983).Google Scholar

  • [13]

    (a) S. Arumugam, S. V. Orski, J. Locklin, V. V. Popik. J. Am. Chem. Soc. 134, 179 (2012); (b) S. Arumugam, V. V. Popik. J. Am. Chem. Soc. 133, 5573 (2011); (c) S. Arumugam, V. V. Popik. J. Am. Chem. Soc. 133, 15730 (2011); (d) S. Arumugam, V. V. Popik. J. Am. Chem. Soc. 131, 11892 (2009).Google Scholar

  • [14]

    B. P. Ngoy, P. Šebej, T. Šolomek, B. H. Lim, T. Pasterik, B. S. Park, R. S. Givens, D. Heger, P. Klán. Photochem. Photobiol. Sci. 11, 1465 (2012).Google Scholar

About the article

Published Online: 2017-01-11

Published in Print: 2017-02-01


Citation Information: Pure and Applied Chemistry, Volume 89, Issue 2, Pages 259–268, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0915.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sudhakar Kadari, Hemasri Yerrabelly, Jayaprakash Rao Yerrabelly, Thirupathi Gogula, Yadaiah Goud, Gangadhar Thalari, and Sai Reddy Doda
Synthetic Communications, 2018, Page 1

Comments (0)

Please log in or register to comment.
Log in