Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 89, Issue 1

Issues

Structural variability in M2+ 2-hydroxyphosphonoacetate moderate proton conductors

Rosario M. P. Colodrero
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Inés R. Salcedo
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Montse Bazaga-García
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diego F. Milla-Pérez
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonatan D. Durán-Martín
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enrique R. Losilla
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Laureano Moreno-Real
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jordi Rius / Miguel A. G. Aranda / Konstantinos D. Demadis
  • Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Crete, GR-71003, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pascual Olivera-Pastor
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aurelio Cabeza
  • Corresponding author
  • Departamento de Química Inorgánica, Universidad de Málaga, Campus Teatinos S/N. 29071-Málaga, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-06 | DOI: https://doi.org/10.1515/pac-2016-1003

Abstract

The structural variability of two series of Mg2+- and Zn2+- 2-hydroxyphosphonoacetates have been studied in the range of 25–80°C and 95% relative humidity in order to correlate the structure with the proton conductivity properties. In addition to selected previously reported 1D, 2D and 3D materials, a new compound, KZn6(OOCCH(OH)PO3)4(OH)·5H2O (KZn6-HPAA-3D), has been prepared and thoroughly characterized. The crystal structure of this solid, solved ab initio from synchrotron X-ray powder diffraction data, consists of a negatively charged 3D framework with K+ ions, as compensating counterions. It also contains water molecules filling the cavities in contrast to the potassium-free 3D anhydrous NH4Zn(OOCCH(OH)PO3) (NH4Zn-HPAA-3D). In the range of temperature studied, the 1D materials exhibit a 1D→2D solid-state transition. At 80°C and 95% RH, the 2D solids show moderate proton conductivities, between 2.1×10−5 S·cm−1 and 6.7×10−5 S·cm−1. The proton conductivity is slightly increased by ammonia adsorption up to 2.6×10−4 S·cm−1, although no ammonia intercalation was observed. As synthesized KZn6-HPAA-3D exhibits a low proton conductivity, 1.6×10−6 S·cm−1, attributed to the basic character of the framework and a low mobility of water molecules. However, this solid transforms to the 2D phase, Zn(OOCCH(OH)PO3H)·2H2O, upon exposure to dry HCl(g), which enhances the proton conductivity with respect to the as-synthesized 2D material (4.5×10−4 S·cm−1). On the other hand, NH4Zn-HPAA-3D exhibited a higher proton conductivity, 1.4×10−4 S·cm−1, than the K+ analog.

This article offers supplementary material which is provided at the end of the article.

Keywords: coordination polymers; metal phosphonates; POC-16; proton conductivity; solid-state chemistry

Article note:

A collection of invited papers based on presentations at the 16th International Conference on Polymers and Organic Chemistry (POC-16), Hersonissos (near Heraklion), Crete, Greece, 13–16 June 2016.

References

  • [1]

    H. W. Langmi, J. Ren, N. M. Musyoka. in Nanomaterials for Fuel Cell Catalysis, K. I. Ozoemena, S. Chen (Eds.) p. 367 (Ch. 9), Springer International Publishing, Switzerland (2016).Google Scholar

  • [2]

    M. Yoon, K. Suh, S. Natarajan, K. Kim. Angew. Chem. Int. Ed. 52, 2688 (2013).Google Scholar

  • [3]

    G. K. H. Shimizu, J. D. Taylor, K. W. Dawson. in Metal Phosphonate Chemistry: From Synthesis to Applications, A. Clearfield, K. D. Demadis (Eds.) p. 493 (Ch. 15), Royal Society of Chemistry, London (2012).Google Scholar

  • [4]

    P. Ramaswamy, N. E. Wong, G. K. H. Shimizu. Chem. Soc. Rev. 43, 5913 (2014).Google Scholar

  • [5]

    J. D. Taylor, K. W. Dawson, G. K. H. Shimizu. J. Am. Chem. Soc. 135, 1193 (2013).Google Scholar

  • [6]

    P. Ramaswamy, N. E. Wong, B. S. Gelfand, G. K. H. Shimizu. J. Am. Chem. Soc. 137, 7640 (2015).Google Scholar

  • [7]

    S.-S. Bao, N.-Z. Li, J. M. Taylor, Y. Shen, H. Kitagawa, L.-M. Zheng, Chem. Mater. 27, 8116 (2015).Google Scholar

  • [8]

    A. Donnadio, M. Nocchetti, F. Costantino, M. Taddei, M. Casciola, F. da Silva Lisboa, R. Vivani. Inorg. Chem. 53, 13220 (2014).Google Scholar

  • [9]

    S. Begum, Z. Wang, A. Donnadio, F. Costantino, M. Casciola, R. Valiullin, C. Chmelik, M. Bertmer, J. Kärger, J. Haase, H. Krautscheid. Chem. Eur. J. 20, 8862 (2014).Google Scholar

  • [10]

    K. D. Demadis, M. Papadaki, R. G. Raptis, H. J. Zhao. Solid State Chem. 181, 679 (2008).Google Scholar

  • [11]

    K. D. Demadis, M. Papadaki, R. G. Raptis, H. Zhao. Chem. Mater. 20, 4835 (2008).Google Scholar

  • [12]

    S. Lodhia, A. Turner, M. Papadaki, K. D. Demadis, G. B. Hix. Cryst. Growth Des. 9, 1811 (2009).Google Scholar

  • [13]

    K. D. Demadis, M. Papadaki, M. A. G. Aranda, A. Cabeza, P. Olivera-Pastor, Y. Sanakis. Cryst. Growth Des. 10, 357 (2010).Google Scholar

  • [14]

    R. M. P. Colodrero, P. Olivera-Pastor, A. Cabeza, M. Papadaki, K. D. Demadis, M. A. G. Aranda. Inorg. Chem. 49, 761 (2010).Google Scholar

  • [15]

    K. D. Demadis, M. Papadaki, I. Cisarova. ACS-Appl. Mater. Interf. 2, 1814 (2010).Google Scholar

  • [16]

    R. M. P. Colodrero, A. Cabeza, P. Olivera-Pastor, J. Rius, D. Choquesillo-Lazarte, J. M. García-Ruiz, M. Papadaki, K. D. Demadis, M. A. G. Aranda. Cryst. Growth Des. 11, 1713 (2011).Google Scholar

  • [17]

    R. M. P. Colodrero, A. Cabeza, P. Olivera-Pastor, E. R. Losilla, K. E. Papathanasiou, N. Stavgianoudaki, J. Sanz, I. Sobrados, D. Choquesillo-Lazarte, J. M. García-Ruiz, L. León Reina, M. A. G. Aranda, P. A. Corvillo, K. D. Demadis. Chem. Mater. 24, 3780 (2012).Google Scholar

  • [18]

    M. Bazaga-García, M. Papadaki, R. M. P. Colodrero, P. Olivera-Pastor, E. R. Losilla, B. Nieto-Ortega, M. A. G. Aranda, D. Choquesillo-Lazarte, A. Cabeza, K. D. Demadis. Chem. Mater. 27, 424 (2015).Google Scholar

  • [19]

    R. Fu, S- Xiang, H. Zhang, J. Zhang, X. Wu. Crystal Growth & Design 5, 1795 (2005).Google Scholar

  • [20]

    R. Fu, H. Zhang, L. Wang, S. Hu, Y. Li, X. Huang, X. Wu. Eur. J. Inorg. Chem. 16, 3211 (2005).Google Scholar

  • [21]

    M. Bazaga-García, R. M. P. Colodrero, M. Papadaki, P. Garczarek, J. Zoń, P. Olivera-Pástor, E. R. Losilla, L. León-Reina, M. A. G. Aranda, D. Choquesillo-Lazarte, K. D. Demadis, A. Cabeza. J. Am. Chem. Soc. 136, 5731 (2014).Google Scholar

  • [22]

    A. Boultif, D. Louer. J. Appl. Cryst. 37, 724 (2004).Google Scholar

  • [23]

    J. Rius, O. Vallcorba, I. Peral, C. Frontera, C. Miravitlles. DAjust Software. “Pattern matching, space group determination and intesity extraction from powder diffraction data”, Instituto de Ciencias de los Materiales de Barcelona (CSIC), Spain (2011).Google Scholar

  • [24]

    J. Rius. Acta Cryst. A67, 63 (2011).Google Scholar

  • [25]

    H. M. Rietveld. J. Appl. Cryst. 2, 65 (1969).Google Scholar

  • [26]

    A. C. Larson, R. B. Von Dreele. “General Structure Analysis System (GSAS)”, Los Alamos National Laboratory Report LAUR 86–748 (2004).Google Scholar

  • [27]

    B. H. Toby. J. Appl. Cryst. 34, 210 (2001).Google Scholar

  • [28]

    winDETA; Novocontrol GmbH: Hundsangen, Germany (1995).Google Scholar

  • [29]

    A. Cabeza, M. A. G. Aranda. in Metal Phosphonate Chemistry: From synthesis to Applications, A. Clearfield, K. D. Demadis (Eds.) p. 107 (Ch. 4), The Royal Society of Chemistry, London (2012).Google Scholar

  • [30]

    A. Cabeza, P. Olivera-Pastor, R. M. P. Colodrero. in Tailored Organic-Inorganic Materials, E. Brunet, J. L. Colón, A. Clearfield (Eds.) p. 137 (Ch. 4), John Wiley & Sons, Inc., Hoboken, New Jersey (2015).Google Scholar

  • [31]

    K. D. Demadis, A. Panera, Z. Anagnostou, D. Varouhas, A. M. Kirillov, I. Cisarova. Cryst. Growth Des. 13, 4480, (2013).Google Scholar

  • [32]

    R. Fu, S. Hu, X. Wu. Dalton Trans. 43, 9440 (2009).Google Scholar

  • [33]

    Z. Sun, H. Chen, Z. Liu, L. Cui, Y. Zhu, Y. Zhao, J. Zhang, W. You, Z. Zhu. Inorg. Chem. Commun. 10, 283–286 (2007).Google Scholar

  • [34]

    D. D. Borges, S. Devautour-Vinot, H. Jobic, J. Olivier, F. Nouar, R. Semino, T. Devic, C. Serre, F. Paesani, G. Maurin. Angew. Chem. Int. Ed. 55, 3919 (2016).Google Scholar

  • [35]

    E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo, H. Liu, B. Dkhil, F. Lloret, K. Nakagawa, H. Tokoro, S.-I. Ohkoshi, M. Verdaguer. J. Am. Chem. Soc 133, 15328 (2011).Google Scholar

  • [36]

    S. Liu, Z. Yue, Y. Liu. Dalton Trans. 44, 12976 (2015).Google Scholar

  • [37]

    S.-N. Zhao, X.-Z. Song, M. Zhu, X. Meng, L.-L. Wu, S.-Y. Song, C. Wang, H.-J. Zhang. Dalton Trans. 44, 948 (2015).Google Scholar

  • [38]

    M. Taddei, A. Donnadio, F. Costantino, R. Vivani, M. Casciola. Inorg. Chem. 52, 12131 (2013).Google Scholar

  • [39]

    S. Tominaka, A. K. Cheetham, RSC Adv. 4, 54382 (2014).Google Scholar

About the article

Published Online: 2017-01-06

Published in Print: 2017-01-01


Citation Information: Pure and Applied Chemistry, Volume 89, Issue 1, Pages 75–87, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-1003.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Song-Song Bao, George K.H. Shimizu, and Li-Min Zheng
Coordination Chemistry Reviews, 2017

Comments (0)

Please log in or register to comment.
Log in