Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 89, Issue 1

Issues

Functional polyketones for the removal of calcium and magnesium from water (Part II): cross-linking and functional characterization

Patrick A. Figaroa
  • Corresponding author
  • Department of Chemical Engineering/Product Technology, ENTEG, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henk Miedema
  • Wetsus, European Center of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gert-Jan Euverink
  • Products and Processes for Biotechnology, ENTEG, University of Groningen, Groningen, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesco Picchioni
  • Corresponding author
  • Department of Chemical Engineering/Product Technology, ENTEG, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-18 | DOI: https://doi.org/10.1515/pac-2016-1007

Abstract

Functional polyketones were chemically cross-linked for the softening of hard water, i.e. for the removal of the divalent cations Ca2+ and Mg2+. Elemental analysis, FT-IR spectroscopy, solubility- and swelling-experiments were used to demonstrate the occurrence of the cross-link reaction. Testing the different compounds for their Ca2+ and Mg2+ removal capacity assessed the structure-functionality of the polymers. The corresponding water-insoluble resins were then tested for their Ca2+ and Mg2+ removal capacity-performance being explained in terms of their chemical structure. Ion adsorption of these polymers is not based on an ion exchange, the prevailing mechanism for most currently existing adsorption resins. Rather, the amino functionalized polymers synthesized here adsorb cations as well as their accompanying anionic counterparts, possibly through a chelating mechanism. The obtained results show that functional polyketones are promising in this context as they are easily tunable with the chemical nature of the N-containing groups determining the affinity of the polymer for Ca2+ and/or Mg2+.

Keywords: adsorption; cross-link; elemental analysis; FT-IR spectroscopy; hard water; inductively coupled plasma (ICP) mass spectrometry; ion chromatography; POC-16

Article note:

A collection of invited papers based on presentations at the 16th International Conference on Polymers and Organics Chemistry (POC-16), Hersonissos (near Heraklion), Crete, Greece, 13–16 June 2016.

References

  • [1]

    B. Van der Bruggen, H. Goosen, P. A. Everard, K. Stemgee, W. Rogge. J. Environ. Manag. 91, 541 (2009).Google Scholar

  • [2]

    J. K. Fawell, U. Lund, B. Mintz. Guidelines for drinking water quality, 2,1 (1996).Google Scholar

  • [3]

    N. Ferlin, D. Grassi, C. Ojeda, M. J. L. Castro, A. Fernandez-Cirelli, J. Kovensky, E. Grand. J. Surfact. Deterg. 15, 259 (2012).Google Scholar

  • [4]

    M. M. Saleh. Desalination 235, 319 (2009).Google Scholar

  • [5]

    I. Arrigo, P. Catalfamo, L. Cavallari, S. Di Pasquale. J. Hazard Mater. 147, 513 (2007).Google Scholar

  • [6]

    M. E. Mahmoud, A. A. Yakout, H. Abdel-Aal, M. M. Osman. Bioresour. Technol. 134, 324 (2013).Google Scholar

  • [7]

    S. B. Shadizeh, R. W. Taylor, J. F. Scamehorn, A. L. Schovanec, S. D. Christian. Metal-Ion Separation and Preconcentration 716, 280 (1990).Google Scholar

  • [8]

    C. Qin, R. Wang, W. Ma. Chem. Eng. J. 156, 540 (2010).Google Scholar

  • [9]

    N. Kabay, M. Demircioglu, E. Ersöz, I. Kurucaovali. Desalination 149, 343 (2002).Google Scholar

  • [10]

    B. Mahmoud, M. Yosra, A. Nadia. Sep. Purif. Technol. 171, 88 (2016).Google Scholar

  • [11]

    Z. Amjad, P. G. Koutsoukos. Desalination 335, 55 (2014).Google Scholar

  • [12]

    A. A. Al-Hamzah, C. M. Fellows. Desalination 359, 22 (2015).Google Scholar

  • [13]

    M. A. Migahed, S. M. Rashwan, M. M. Kamel, R. E. Habib. J. Mol. Liquids 224, 849 (2016).Google Scholar

  • [14]

    K. D. Demadis. Desalination Res. Prog. Chapter VI, 1, 1249 (2008).Google Scholar

  • [15]

    S. Seo, H. Jeon, J. K. Lee, G. Kim, D. Park, H. Nojima, J. Lee, S. Moon. Water Res. 44, 2267 (2010).Google Scholar

  • [16]

    S. S. Cob, C. Beaupin, B. Hofs, M. M. Nederlof, D. J. H. Harmsen, E. R. Cornelissen, A. Zwijnenburg, F. E. G. Guner, G. J. Witkamp. Desalination Water Treat. 51, 936 (2013).Google Scholar

  • [17]

    P. A. Figaroa, H. Miedema, G. J. W. Euverink, F. Picchioni. 16th International Conference Polymers and Organic Chemistry. Part I, (2016).Google Scholar

  • [18]

    S. Nomanbhay, K. Palanisamy. Electron. J. Biotechnol. 8, 43 (2005).Google Scholar

  • [19]

    L. Hua, H. N. Hou. Electronic Packaging Technology & High Density Packaging. 1 (2008).Google Scholar

  • [20]

    C. Toncelli, A. Haijer, F. Alberts, A. A. Broekhuis, F. Picchioni. Ind. Eng. Chem. Res. 54, 9450 (2015).Google Scholar

About the article

Published Online: 2017-01-18

Published in Print: 2017-01-01


Citation Information: Pure and Applied Chemistry, Volume 89, Issue 1, Pages 51–60, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-1007.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in