Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 5

Issues

A sustainable strategy for production and functionalization of nanocelluloses

Armando Córdova / Samson Afewerki / Rana Alimohammadzadeh / Italo Sanhueza / Cheuk-Wai Tai
  • Department of Material Sciences, Arrhenius Laboratory, Stockholm University, Stockholm 106 91, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sinke H. Osong
  • Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, Sundsvall 85170, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Per Engstrand
  • Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, Sundsvall 85170, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ismail Ibrahem
Published Online: 2018-11-08 | DOI: https://doi.org/10.1515/pac-2018-0204

Abstract

A sustainable strategy for the neat production and surface functionalization of nanocellulose from wood pulp is disclosed. It is based on the combination of organocatalysis and click chemistry (“organoclick” chemistry) and starts with nanocellulose production by organic acid catalyzed hydrolysis and esterification of the pulp under neat conditions followed by homogenization. This nanocellulose fabrication route is scalable, reduces energy consumption and the organic acid can be efficiently recycled. Next, the surface is catalytically engineered by “organoclick” chemistry, which allows for selective and versatile attachment of different organic molecules (e.g. fluorescent probes, catalyst and pharmaceuticals). It also enables binding of metal ions and nanoparticles. This was exemplified by the fabrication of a heterogeneous nanocellulose-palladium nanoparticle catalyst, which is used for Suzuki cross-coupling transformations in water. The disclosed surface functionalization methodology is broad in scope and applicable to different nanocelluloses and cellulose based materials as well.

Keywords: click chemistry; cross-coupling reaction; heterogeneous catalysis; nanocellulose; NICE-2016; organocatalysis; surface engineering

Article note

A collection of invited papers based on presentations at the 3rd International Conference on Bioinspired and Biobased Chemistry and Materials: Nature Inspires Creativity Engineers (NICE-2016), Nice, France, 16–19 October 2016.

References

  • [1]

    K. E. Drexler. Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley & Sons, New York (1992).Google Scholar

  • [2]

    R. Mavelli-Sam, B. Deepa, R. R. Koshy, S. K. Mary, L. A. Pothan, S. Thomas. “Rheological properties of nanocomposities based on cellulose nanofibril CNF- and cellulose nanocrystal CNC-based nanocomposities”, in Handbook of Nanocellulose and Cellulose Nanocomposites, Vol. 2, H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne (Eds.), pp. 481–521, John Wiley & Sons, Weinheim, Germany (2017).Google Scholar

  • [3]

    S. S. Nair, J. Zhu, Y. Deng, A. J. Ragauskas. Sustain. Chem. Process. 2, 23 (2014).CrossrefGoogle Scholar

  • [4]

    A. Isogai, T. Saito, H. Fukuzumi. Nanoscale 3, 71 (2011).CrossrefGoogle Scholar

  • [5]

    D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris. Angew. Chem. Int. Ed. Engl. 50, 5438 (2001).Google Scholar

  • [6]

    D. Klemm, S. Schumann, F. Kramer, N. Hessler, M. Hornung, H. P. Schmauder, S. Marsch. “Polysaccharides II”, in Nanocelluloses as Innovative Polymers in Research and Application, Vol. 205, D. Klemm (Ed.), p. 49, Springer, Heidelberg (2006).Google Scholar

  • [7]

    E. Lam, K. B. Male, J. H. Chong, A. C. Leung, J. H. Luong. Trends Biotechnol. 30, 283 (2012).CrossrefGoogle Scholar

  • [8]

    S. H. Osong, S. Norgren, P. Engstrand. Cellulose 23, 93 (2016).CrossrefGoogle Scholar

  • [9]

    S. Iwamoto, A. N. Nakagaito, H. Yano, M. Nogi. Appl. Phys. A 81, 1109 (2005).CrossrefGoogle Scholar

  • [10]

    A. F. Turbak, F. W. Snyder, K. R. Sandberg. J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 815 (1983).Google Scholar

  • [11]

    R. Marchessault, F. Morehead, N. Walter. Nature 184, 632 (1959).CrossrefGoogle Scholar

  • [12]

    K. L. Spence, R. A. Venditti, O. J. Rojas, Y. Habibi, J. J. Pawlak. Cellulose 18, 1097 (2011).CrossrefGoogle Scholar

  • [13]

    L. Wagberg, G. Decher, M. Norgren, T. Lindström, M. Ankerfors, K. Axnäs. Langmuir 24, 784 (2008).CrossrefGoogle Scholar

  • [14]

    S. Afewerki, R. Alimohammadzadeh, S. H. Osong, C.-W. Tai, P. Engstrand, A. Cordova. Global Challenges 1, 1700045 (2017).CrossrefGoogle Scholar

  • [15]

    A. Isogai, T. Saito, H. Fukuzumi. Nanoscale 3, 71 (2011).CrossrefGoogle Scholar

  • [16]

    P. L. Anelli, C. Biffi, F. Montanari, S. Quici. J. Org. Chem. 52, 2559 (1987).CrossrefGoogle Scholar

  • [17]

    M. Henriksson, G. Henriksson, L. A. Berglund, T. Lindström. Eur. Pol. J. 43, 3434 (2007).CrossrefGoogle Scholar

  • [18]

    M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala. Biomacromolecules 8, 1934 (2007).CrossrefGoogle Scholar

  • [19]

    R. Arvidsson, D. Nguyen, M. Svanström. Environ. Sci. Technol. 49, 6881 (2015).CrossrefGoogle Scholar

  • [20]

    Q. Li, S. McGinnis, C. Sydnor, A. Wong, S. Rennecker. ACS Sustainable Chem. Eng. 1, 919 (2013).CrossrefGoogle Scholar

  • [21]

    X. M. Dong, J. F. Revol, D. G. Gray. Cellulose 5, 19 (1998).CrossrefGoogle Scholar

  • [22]

    S. Beck-Candanedo, M. Roman, D. G. Gray. Biomacromolecules 6, 1048 (2005).CrossrefGoogle Scholar

  • [23]

    J. Hafren, A. Córdova. Macromol. Rapid Commun. 26, 82 (2005).CrossrefGoogle Scholar

  • [24]

    A. Carlmark, E. Larsson, E. Malmström. Eur. Polym. J. 48, 1646 (2012).CrossrefGoogle Scholar

  • [25]

    Y. Habibi. Chem. Soc. Rev. 43, 1519 (2014).CrossrefGoogle Scholar

  • [26]

    D. D. Liu, E. Y. X. Chen. Green Chem. 16, 964 (2014).CrossrefGoogle Scholar

  • [27]

    H. C. Kolb, M. G. Finn, K. B. Sharpless. Angew. Chem. Int. Ed. Engl. 40, 2004 (2001).CrossrefGoogle Scholar

  • [28]

    J. Hafrén, W. Zou, W. A. Córdova. Macromol. Rapid Commun. 27, 1362 (2006).CrossrefGoogle Scholar

  • [29]

    G. L. Zhao, J. Hafren, L. Deiana, A. Cordova. Macromol. Rapid Commun. 31, 740 (2010).CrossrefGoogle Scholar

  • [30]

    P. T. Tingaut, R. Hauert, T. Zimmermann. J. Mat. Chem. 40, 16066 (2011).Google Scholar

  • [31]

    J. L. Huang, C. J. Li, D. G. Grey. RSC Adv. 4, 6965 (2014).CrossrefGoogle Scholar

  • [32]

    H. Hetteger, M. Beaumont, A. Potthas, T. Rosenau. ChemSusChem. 9, 75 (2016).CrossrefGoogle Scholar

  • [33]

    A. Cordova, S. Afewerki. (SE 2015-51537), WO 2017089413 A1, 2015.Google Scholar

  • [34]

    Y. Sun, L. Lin, C. Pang, H. Deng, H. Peng, J. Li, B. He, S. Liu. Energy Fuels 21, 2386 (2007).CrossrefGoogle Scholar

  • [35]

    A. Rahimi, A. Ulbrich, J. J. Coon, S. S. Stahl. Nature 515, 249 (2014).CrossrefGoogle Scholar

  • [36]

    B. Li, W. Xu, D. Kronlund, A. Määttänen, J. Liu, J.-H. Smått, J. Peltonen, S. Willför, X. Mu, C. Xu. Carbohydr. Polym. 133, 605 (2015).CrossrefGoogle Scholar

  • [37]

    S. Spinella, A. Maiorana, Q. Qian, N. J. Dawson, V. Hepworth, S. A. McCallum, M. Ganesh, K. D. Singer, R. A. Gross. ACS Sustainable Chem. Eng. 4, 1538 (2016).CrossrefGoogle Scholar

  • [38]

    Y. Qin, X. Qiu, J. Y. Zhu. Sci. Rep. 6, 35602 (2016).CrossrefGoogle Scholar

  • [39]

    D. Li, J. Henschen, M. Ek. Green. Chem. 29, 5564 (2017).Google Scholar

  • [40]

    B. Braun, J. R. Dorgan. Biomacromolecules 10, 334 (2009).CrossrefGoogle Scholar

  • [41]

    R. Alimohammadzadeh, I. Sanhueza, A. Córdova. Manuscript in preparation.Google Scholar

  • [42]

    M. Kaushik, K. Basu, C. Benoit, C. M. Cirtiu, H. Vali, A. Moores. J. Am. Chem. Soc. 137, 6124 (2015).CrossrefGoogle Scholar

  • [43]

    C. Hedfors, E. Östmark, E. Malmström, K. Hult, M. Martinelle. Macromolecules 38, 647 (2005)CrossrefGoogle Scholar

  • [44]

    P. V. Persson, J. Casas, T. Iversen, A. Cordova. Macromolecules 39, 2819 (2006).CrossrefGoogle Scholar

  • [45]

    J. W. Lee, T. Mayer-Gall, K. Opwis, C. E. Song, J. S. Gutmann, B. List. Science 341, 1225 (2013).CrossrefGoogle Scholar

  • [46]

    C. E. Song. Cinchona Alkaloids in Synthesis and Catalysis: Ligands, Immobilisation and Organocatalysis, Wiley-VCH, Weinheim, Germany (2009).Google Scholar

About the article

Published Online: 2018-11-08

Published in Print: 2019-05-27


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 5, Pages 865–874, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0204.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in