Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 90, Issue 11

Issues

Visible light-induced reduction system of diphenylviologen derivative with water-soluble porphyrin for biocatalytic carbon–carbon bond formation from CO2

Takayuki Katagiri
  • Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kohei Fujita
  • Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shusaku Ikeyama
  • Advanced Research Institute for Natural Science and Technology, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yutaka Amao
  • Corresponding author
  • Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
  • Advanced Research Institute for Natural Science and Technology, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
  • Research Centre for Artificial Photosynthesis (ReCAP), Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-03 | DOI: https://doi.org/10.1515/pac-2018-0402

Abstract

From the view point of green chemistry, CO2 utilization technologies with solar energy including the photoredox system have been received a lot of attention. As one of them, photoredox system containing a photosensitizer and a catalyst catalyzing a reaction of a carbon–carbon bond formation from CO2 as a feed stock were constructed. In a recent study, we reported the visible light-induced malate (C4 compound) production from pyruvate (C3 compound) and CO2 due to carbon–carbon bond formation with the system consisting an electron donor, a photosensitizer, diphenylviologen (PV2+) derivative as an electron mediator in the presence of malic enzyme (ME). However, the interaction between a photosensitizer and PV2+ derivative has not been clarified yet. In this study, water-soluble PV2+ derivative, 1,1′-bis(p-sulfonatophenyl)-4,4′-bipyridinium salt (PSV2+) was synthesized, and its electro-, photochemical properties were evaluated. Moreover, the photoredox properties of PSV2+ with water-soluble Zn porphyrin were studied using fluorescence spectroscopy and steady state irradiation. The fluorescence of Zn porphyrin was quenched by PSV2+ and the two-electron reduced form of PSV2+ were produced with Zn porphyrin with steady state irradiation. In addition, reaction solution containing triethanolamine, tetraphenylporphyrin tetrasulfonate, pyruvate, ME, Mg2+ and PSV2+ in CO2 saturated bis-tris buffer (pH 7.4) was irradiated with visible light, the oxaloacetate and malate were produced. This result indicates that PSV2+ is an efficient electron mediator in the visible light-induced redox system for carbon–carbon bond formation with ME from CO2 as a feedstock.

Keywords: carbon–carbon bond formation; CO2 fixation; green chemistry; ICGC-7; malate; malic enzyme; oxaloacetate; pyruvate; viologen; visible light; zinc porphyrin

Article note

A collection of invited papers based on presentations at the 7th International IUPAC Conference on Green Chemistry (ICGC-7), Moscow, Russia, 2–5 October 2017.

References

  • [1]

    A. Fujishima, K. Honda. Nature 238, 37 (1972).Google Scholar

  • [2]

    J. R. Darwent, P. Douglas, A. Harriman, G. Porter, M.-C. Richoux. Coord. Chem. Rev. 44, 83 (1982).Google Scholar

  • [3]

    I. Okura. Biochimie 68, 189 (1986).Google Scholar

  • [4]

    M. Beller, U. T. Bornscheuer. Angew. Chem., Int. Ed. 53, 4527 (2014).Google Scholar

  • [5]

    H. Takeda, K. Koike, H. Inoue, O. Ishitani. J. Am. Chem. Soc. 130, 2023 (2008).Google Scholar

  • [6]

    Y. Chisti. Biotechnol. Adv. 25, 294 (2007).Google Scholar

  • [7]

    A. Kudo, M. Yugo. Chem. Soc. Rev. 38, 253 (2009).Google Scholar

  • [8]

    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti. Nat. Mater. 8, 76 (2009).Google Scholar

  • [9]

    X. Chen, L. Liu, Y. Y. Peter, S. S. Mao. Science 331, 746 (2011).Google Scholar

  • [10]

    S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk. Angew. Chem. Int. Ed. 52, 7372 (2013).Google Scholar

  • [11]

    S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes. ACS Nano 4, 1259 (2010).Google Scholar

  • [12]

    H. Ishida, K. Tanaka, T. Tanaka. Organometallics 6, 181 (1987).Google Scholar

  • [13]

    B. A. Parkinson, P. F. Weaver. Nature 309, 148 (1984)Google Scholar

  • [14]

    B. R. Crable, C. M. Plugge, M. J. McInerney, A. J. Stams. Enzyme Res. 2011, 532536 (2011).Google Scholar

  • [15]

    Y. Amao. ChemCatChem 3, 458 (2011).Google Scholar

  • [16]

    D. Mandler, I. Willner. J. Chem. Soc., Perkin Trans. 2 0, 997 (1988).Google Scholar

  • [17]

    I. Willner, D. Mandler. J. Am. Chem. Soc. 111, 1330 (1989).Google Scholar

  • [18]

    M. Kodaka, Y. Kubota. J. Chem. Soc., Perkin Trans. 2 0, 891 (1999).Google Scholar

  • [19]

    R. Miyatani, Y. Amao. Biotechnol. Lett. 24, 1931 (2002).Google Scholar

  • [20]

    R. Miyatani, Y. Amao. J. Jpn. Petrol. Inst. 47, 27 (2004).Google Scholar

  • [21]

    Y. Amao, R. Abe, S. Shiotani. J. Photochem. Photobio. A: Chem. 313, 149 (2015).Google Scholar

  • [22]

    Y. Amao, S. Ikeyama. Chem. Lett. 44, 1182 (2015).Google Scholar

  • [23]

    S. Ikeyama, T. Katagiri, Y. Amao. J. Photochem. Photobio. A: Chem. 358, 362 (2018).Google Scholar

  • [24]

    J. H. Kim, S. H. Lee, J. S. Lee, M. Lee, C. B. Park. Chem. Commun. 47, 10227 (2011).Google Scholar

  • [25]

    L. A. Kelly, M. A. J. Rodgers. J. Phys. Chem. 98, 6386 (1994).Google Scholar

  • [26]

    Y. Amao. Chem. Lett. 46, 780 (2017).Google Scholar

  • [27]

    A. Bar-Even, A. Flamholz, E. Noor, R. Milo. BBA – Bioenergetics 1817, 1646 (2012).Google Scholar

  • [28]

    C. B. Grissom, W. W. Cleland. Biochemistry 27, 2927 (1988).Google Scholar

  • [29]

    Y. Amao, M. Ishikawa. J. Jpn. Petrol. Inst. 50, 272 (2007).Google Scholar

  • [30]

    Y. Amao, M. Ishikawa. Catal. Commun. 8, 423 (2007).Google Scholar

  • [31]

    T. Itoh, H. Asada, K. Tobioka, Y. Kodera, A. Matsushima, M. Hiroto, H. Nishimura, T. Kamachi, I. Okura, Y. Inada. Bioconjugate Chem. 11, 8 (2000).Google Scholar

  • [32]

    Y. Amao, S. Ikeyama, T. Katagiri, K. Fujita. Faraday Discuss. 198, 73 (2017).Google Scholar

  • [33]

    T. Katagiri, S. Ikeyama, Y. Amao. J. Photochem. Photobio. A: Chem. 358, 368 (2018).Google Scholar

  • [34]

    E. B. Fleischer, S. K. Cheung. J. Am. Chem. Soc. 98, 8381 (1976).Google Scholar

  • [35]

    Y. Amao, I. Okura. J. Mol. Catal. A: Chem. 105, 125 (1996).Google Scholar

  • [36]

    H. Kamogawa, S. Sato. Bull. Chem. Soc. Jpn. 64, 321 (1991).Google Scholar

  • [37]

    M. Leroux, N. Mercier, M. Allain, M. C. Dul, J. Dittmer, A. H. Kassiba, J. P. Bellat, G. Weber, I. Bezverkhyy. Inorg. Chem. 55, 8587 (2016).Google Scholar

  • [38]

    O. Stern, M. Volmer. Phys. Z 20, 183 (1919).Google Scholar

  • [39]

    M. Kaneko, K. Suzuki, E. Ebel, D. Wöhrle. Macromol. Symp. 204, 71 (2003).Google Scholar

  • [40]

    A. M. Manke, K. Geisel, A. Fetzer, P. Kurz. Phys. Chem. Chem. Phys. 16, 12029 (2014).Google Scholar

  • [41]

    C. C. Kuo, K. Y. Lin, Y. J. Hsu, S. Y. Lin, Y. T. Lin, G. G. Chang, W. Y. Chou. Biochem. J. 411, 467 (2008).Google Scholar

About the article

Published Online: 2018-09-03

Published in Print: 2018-11-27


Citation Information: Pure and Applied Chemistry, Volume 90, Issue 11, Pages 1723–1733, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0402.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in