Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Ahead of print

Issues

Fluorescent surfactants from common dyes – Rhodamine B and Eosin Y

Ashleigh D. Smith McWilliams / Selin Ergülen / Meredith M. Ogle / Carlos A. de los Reyes / Matteo Pasquali
  • Department of Chemistry, Rice University, Houston, TX 77005, USA
  • Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
  • Deparment of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
  • Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, TX 77005, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Angel A. Martí
  • Corresponding author
  • Department of Chemistry, Rice University, Houston, TX 77005, USA
  • Deparment of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
  • Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, TX 77005, USA
  • Department of Bioengineering, Rice University, Houston, TX 77005, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-07-18 | DOI: https://doi.org/10.1515/pac-2019-0219

Abstract

Eight fluorescent surfactants were synthesized by attaching aliphatic chains of 6, 10, 12, or 16 carbons to the fluorescent dyes Rhodamine B and Eosin Y. The obtained critical micelle concentrations (CMC) demonstrate an increasing CMC with decreasing aliphatic chain length, which is a typical behavior for surfactants. Additionally, fluorescence quantum yield experiments show a decrease in quantum yield with increasing aliphatic chain length, suggesting that the tails can interact with the dye, influencing its excited state. Finally, applications for the fluorescent surfactants were demonstrated; as a cellular stain in Panc-1 cells and as a dispersion and imaging tool for carbon and boron nitride nanotubes. These surfactants could provide a useful tool for a wide array of potential applications, from textile dyes to fluorescence imaging.

This article offers supplementary material which is provided at the end of the article.

Keywords: colloids; Eosin Y; fluorescence; fluorescencent surfactants; NICE-2018; Rhodamine B

Article note

A collection of invited papers based on presentations at the 4th International Conference on Bioinspired and Biobased Chemistry & Materials (NICE-2018), Nice, France, 14–17 October 2018.

References

  • [1]

    L. L. Schramm, E. N. Stasiuk, D. G. Marangoni. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 99, 3 (2003).CrossrefGoogle Scholar

  • [2]

    M. J. Rosen, J. T. Kunjappu. Surfactants and Interfacial Phenomena, pp. 1–9, John Wiley & Sons, Inc., Hoboken, New Jersey (2012).Google Scholar

  • [3]

    P. Mukerjee, K. J. Mysels. NSRDS-NBS 36, 4 (1971).Google Scholar

  • [4]

    A. Dominguez, A. Fernandez, N. Gonzalez, E. Iglesias, L. Montenegro. J. Chem. Educ. 74, 1227 (1997).CrossrefGoogle Scholar

  • [5]

    I. Kralova, J. Sjöblom. J. Dispers. Sci. Technol. 30, 1363 (2009).CrossrefGoogle Scholar

  • [6]

    M. A. Migahed, A. M. Al-Sabagh. Chem. Eng. Commun. 196, 1054 (2009).CrossrefGoogle Scholar

  • [7]

    A. C. Hellgren, P. Weissenborn, K. Holmberg. Prog. Org. Coatings. 35, 79 (1999).CrossrefGoogle Scholar

  • [8]

    S. Baliarsingh, J. Jena, T. Das, N. B. Das. Ind. Crops Prod. 50, 618 (2013).CrossrefGoogle Scholar

  • [9]

    R. Duggal, M. Pasquali. Phys. Rev. Lett. 96, 246104 (2006).CrossrefGoogle Scholar

  • [10]

    R. Prakash, S. Washburn, R. Superfine, R. E. Cheney, M. R. Falvo. Appl. Phys. Lett. 83, 1219 (2003).CrossrefGoogle Scholar

  • [11]

    J. Niskanen, I. Zhang, Y. Xue, D. Golberg, D. Maysinger, F. M. Winnik. Nanomedicine (Lond.). 11, 447 (2016).CrossrefGoogle Scholar

  • [12]

    P. J. Bennion, R. W. Horobin, L. B. Murgatroyd. Stain Technol. 50, 307 (1975).CrossrefGoogle Scholar

  • [13]

    Z. Xu, P. Li, W. Qiao, Z. Li, L. Cheng. Colloids Surf A 290, 172 (2006).CrossrefGoogle Scholar

  • [14]

    J. Wang, Z. Xu, Y. Zhao, W. Qiao, Z. Li. Dyes Pigm. 74, 103 (2007).CrossrefGoogle Scholar

  • [15]

    P. Yin, P. Wu, Z. Xiao, D. Li, E. Bitterlich, J. Zhang, P. Cheng, D. V. Vezenov, T. Liu, Y. Wei. Angew. Chem. Int. Ed. 50, 2521 (2011).CrossrefGoogle Scholar

  • [16]

    D. J. Boday, J. Kuczynski, J. T. Wertz, J. Zhang. US Patent 2014/0145094 A1, Filed 29 Nov 2012, Issued 29 May 2014.Google Scholar

  • [17]

    J. A. Ross, B. P. Ross, K. L. Cosgrove, H. Rubinsztein-Dunlop, R. P. McGeary. Molbank. 2006, M515 (2006).CrossrefGoogle Scholar

  • [18]

    B. Yu, C. Y. Dong, P. T. C. So, D. Blankschtein, R. Langer. Proc. SPIE. 4262, 217 (2001).CrossrefGoogle Scholar

  • [19]

    T. I. Rokitskaya, G. A. Korshunova, Y. N. Antonenko. Biophys. J 115, 514 (2018).CrossrefGoogle Scholar

  • [20]

    T. Matsumura, K. Hirabayash. US Patent 2004/0091816 A1, Filed 17 Oct 2003, Issued 13 May 2004.Google Scholar

  • [21]

    B. M. Estevão, D. S. Pellosi, C. F. de Freitas, D. Vanzin, D. S. Franciscato, W. Caetano, N. Hioka. J. Photochem. Photobiol. A 287, 30 (2014).CrossrefGoogle Scholar

  • [22]

    S. Troppmann, B. König. Chem. Eur. J. 20, 14570 (2014).CrossrefGoogle Scholar

  • [23]

    F. Liang, A. K. Sadana, A. Peera, J. Chattopadhyay, Z. Gu, R. H. Hauge, W. E. Billups. Nano Lett. 4, 1257 (2004).CrossrefGoogle Scholar

  • [24]

    H. Chen, Y. Chen, J. Yu, J. S. Williams. Chem. Phys. Lett. 425, 315 (2006).CrossrefGoogle Scholar

  • [25]

    S. P. Morcillo, L. Álvarez de Cienfuegos, A. J. Mota, J. Justicia, R. Robles. J. Org. Chem. 76, 2277 (2011).CrossrefGoogle Scholar

  • [26]

    E. Y. Arashiro, N. R. Demarquette. Mater. Res. 2, 23 (1999).CrossrefGoogle Scholar

  • [27]

    A. Daerr, A. Mogne. J. Open Res. Softw. 4, 3 (2016).CrossrefGoogle Scholar

  • [28]

    D. Magde, G. E. Rojas, P. G. Seybold. Photochem. Photobiol. 70, 737 (1999).CrossrefGoogle Scholar

  • [29]

    M. Enoki, R. Katoh. Photochem. Photobiol. Sci. 17, 793 (2018).CrossrefGoogle Scholar

  • [30]

    V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, Y. Talmon. Nano Lett. 3, 1379 (2003).CrossrefGoogle Scholar

  • [31]

    A. D. S. McWilliams, C. A. de los Reyes, L. Liberman, S. Ergülen, Y. Talmon, M. Pasquali, A. A. Martí. Nanoscale Adv. 1, 1096 (2019).CrossrefGoogle Scholar

  • [32]

    R. J. Smith, M. Lotya, J. N. Coleman. New. J. Phys. 12, 125008 (2010).CrossrefGoogle Scholar

About the article

Published Online: 2019-07-18


Funding Source: CHE

Award identifier / Grant number: 1807737

We acknowledge the NSF (CHE, Funder Id: http://dx.doi.org/10.13039/100000165, 1807737) for financial support. We thank Dr. Larry Alemany for his guidance with NMR analysis.


Citation Information: Pure and Applied Chemistry, 20190219, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2019-0219.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in