Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Closed journal

Packaging Research

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

MAP-OPT: A software for supporting decision-making in the field of modified atmosphere packaging of fresh non respiring foods

Valérie Guillard
  • Corresponding author
  • UMR IATE, University of Montpellier - INRA, 2 place Pierre Viala F-34060 Montpellier Cedex, Montpellier, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olivier Couvert / Valérie Stahl / Patrice Buche
  • UMR IATE, University of Montpellier - INRA, 2 place Pierre Viala F-34060 Montpellier Cedex, Montpellier, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aurélie Hanin / Catherine Denis / Juliette Dibie / Stéphane Dervaux / Catherine Loriot / Thierry Vincelot / Véronique Huchet / Bruno Perret / Dominique Thuault
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/pacres-2017-0004


In this paper,we present the implementation of a dedicated software, MAP-OPT, for optimising the design of ModifiedAtmosphere Packaging of refrigerated fresh, nonrespiring food products. The core principle of this software is to simulate the impact of gas (O2/CO2) exchanges on the growth of gas-sensitive microorganisms in the packed food system. In its simplest way, this tool, associated with a data warehouse storing food, bacteria and packaging properties, allows the user to explore his/her system in a user-friendly manner by adjusting/changing the pack geometry, packaging material and gas composition (mixture of O2/CO2/N2). Via the @Web application, the data warehouse associated with MAP-OPT is structured by an ontology, which allows data to be collected and stored in a standardized format and vocabulary in order to be easily retrieved using a standard querying methodology. In an optimisation approach, the MAP-OPT software enables to determine the packaging characteristics (e.g. gas permeability) suitable for a target application (e.g. maximal bacterial population at the best-before-date). These targeted permeabilities are then used to query the packaging data warehouse using the@Web applicationwhich proposes a ranking of the most satisfying materials for the target application (i.e. packaging materialswhose characteristics are the closest to the target ones identified by the MAP-OPT software). This approach allows a more rational dimensioning of MAP of non-respiring food products by selecting the packaging material fitted to “just necessary” (and not by default, that with the greatest barrier properties). A working example of MAP dimensioning for a strictly anaerobic, CO2-sensitive microorganism, Pseudomonas fluorescens, is given to highlight the usefulness of the software.

Keywords: Software; Predictive microbiology; Modified Atmosphere Packaging; Ontology; Data warehouse; Mass transfer; Decision making strategy


  • [1] Angellier-coussy, H., Guillard, V., Guillaume, C., Gontard, N. Role of packaging in the smorgasbord of action for sustainable food consumption. Agro Food Ind., 2013, 23, 15-19.Google Scholar

  • [2] Augustin, J.-C., Zuliani, V., Cornu, M., Guillier, L. Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions. J. Appl. Microbiol., 2005, 99, 1019-42.Google Scholar

  • [3] Baranyi J., Tamplin M., ComBase: A Common Database on Microbial Responses to Food Environments, J. Food Prot., 2004, 67(9), 1834-1840Google Scholar

  • [4] Buche P., Dibie J., Ibanescu M., Soler L., Fuzzy web data tables integration guided by an ontological and terminological resource, in: IEEE Transactions on Knowledge and Data Engineering. Institute of Electrical and Electronics Engineers (IEEE), 2011, p. PP (99), p.1Google Scholar

  • [5] Cagnon T., Méry A., Chalier P., Guillaume C., Gontard N. Fresh food packaging design: A requirement driven approach applied to strawberries and agro-basedmaterials, Innov. Food Sci. Emerg. Technol., 2013, 20, 288-298CrossrefGoogle Scholar

  • [6] Chaix E., Broyart B., Couvert O., Guillaume C., Gontard N., Guillard V. Mechanistic model coupling gas exchange dynamics and Listeria Monocytogenes growth in Modified Atmopshere Packaging of non-respiring food, Food Microbiol., 2015a, 51, 192- 205Google Scholar

  • [7] Chaix E., Couvert O., Guillaume C., Gontard N., Guillard V. Predictive Microbiology Coupled with Gas (O2/CO2) Transfer in Food/Packaging Systems: How to Develop an Eflcient Decision Support Tool for Food Packaging, Compr. Rev. Food Sci. Food Saf., 2015b, 14, 1-21Google Scholar

  • [8] Charles, F., Sanchez, J., Gontard, N. Modeling of Active Modified Atmosphere Packaging of Endives Exposed to Several Postharvest Temperatures. J. Food Sci., 2005, 70, 443-449.Google Scholar

  • [9] Destercke S., Buche P., Charnomordic B. Evaluating data reliability: an evidential answer with application to a Web-enabled data warehouse, IEEE TKDE, 2013, 25, 92-105.Web of ScienceGoogle Scholar

  • [10] Devlieghere F., Geeraerd A.H., Versyck K.J., Vandewaetere B., Van Impe J., Debevere J. Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: a predictive model, Food Microbiol., 2001, 18, 53-66.Google Scholar

  • [11] Floros, J.D., Matsos, K.I. Introduction to modified atmosphere packaging, in: Packaging, J.H.H.B.T.-I. in F. (Ed.), Innovations in Food Packaging. Elsevier academic press, New York, USA, 2005, pp. 159-172.Google Scholar

  • [12] Fonseca, S.C., Oliveira, F.A.R., Brecht, J.K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. J. Food Eng., 2002, 52, 99-119.Google Scholar

  • [13] Gruber T.R., A translation approach to portable ontologies, Knowl. Acquis., 1993, 5, 199-220.CrossrefGoogle Scholar

  • [14] Guillard V., Buche P., Destercke S., Tamani N., Croitoru M., Menut L., Guillaume C., Gontard N. A Decision Support System to design modified atmosphere packaging for fresh produce based on a bipolar flexible querying approach, Comput. Electron. Agric., 2015, 111, 131-139Web of ScienceGoogle Scholar

  • [15] Guillard V., Couvert O., Stahl V., Hanin A., Denis C., Huchet V., Chaix E., Loriot C., Vincelot T., Thuault D. Validation of a predictive model coupling gas transfer and microbial growth in fresh food packed under modified atmosphere, Food Microbiol., 2016, 58, 43-55Web of ScienceCrossrefGoogle Scholar

  • [16] Le Marc Y., Huchet V., Bourgeois C.M., Guyonnet J.P., Mafart P., Thuault D. Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration, Int. J. Food Microbiol., 2002, 73, 219-37Google Scholar

  • [17] Leporq B., Membré J.-M., Dervin C., Buche P., Guyonnet J.P. The “Sym’Previus” software, a tool to support decisions to the foodstuff safety, Int. J. Food Microbiol., 2005, 100, 231-7.CrossrefGoogle Scholar

  • [18] Lungu, B., Ricke, S.C., Johnson, M.G. Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. Anaerobe, 2009, 15, 7-17CrossrefGoogle Scholar

  • [19] Rosso L. Modélisation et microbiologie prévisionnelle: Elaboration d’un nouvel outil pour l’AGRO-alimentaire (PhD). Université Claude Bernard Lyon I, 1995Google Scholar

  • [20] Rosso L., Lobry J.R., Bajard S., Flandrois J.P. Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth, Appl. Environ. Microbiol., 1995, 61, 610-6Google Scholar

  • [21] Simpson R., Acevedo C., Almonacid S. Mass transfer of CO2 in MAP systems: Advances for non-respiring foods, J. Food Eng., 2009, 92, 233-239Web of ScienceCrossrefGoogle Scholar

  • [22] Simpson R., Almonacid S., Acevedo C., Cortes C. Mathematical model to predict effect of temperature abuse in map systems applied to pacific hake (Merluccius australis), J. Food Process Eng., 2003, 26, 413-434CrossrefGoogle Scholar

  • [23] Simpson R., Carevic, E. Designing a modified atmosphere packaging system for foodservice portions on nonrespiring foods: optimal gas mixture and food/headspace ratio, Foodserv. Res. Int., 2004, 14, 257-272Google Scholar

  • [24] Thiele T., Kamphoff M., Kunz B. Modeling the respiration of Pseudomonas fluorescens on solid-state lettuce-juice agar, J. Food Eng., 2006, 77, 853-857Google Scholar

  • [25] Torrieri, E., Cavella, S.,Masi, P. Modelling the respiration rate of fresh-cut Annurca apples to develop modified atmosphere packaging. Int. J. Food Sci. Technol., 2009, 44, 890-899.Web of ScienceCrossrefGoogle Scholar

  • [26] Zwietering M., Wijtzes T., Wit J.C., Riet Kv. A decision support system for prediction of microbial spoilage in foods, Int. J. Food Prot., 1992, 55, 973-979Google Scholar

About the article

Received: 2017-06-07

Accepted: 2017-09-28

Published Online: 2017-12-29

Citation Information: Packaging Research, Volume 2, Issue 1, Pages 28–47, ISSN (Online) 2391-5560, DOI: https://doi.org/10.1515/pacres-2017-0004.

Export Citation

© 2018 De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in