Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Prenatal Cardiology

Editor-in-Chief: Respondek-Liberska, Maria

Managing Editor: Slodki, Maciej / Lami, Yeo

1 Issue per year

Open Access
See all formats and pricing
More options …

An Outline of Cardiogenesis

Krzysztof Piotrowski
  • Corresponding author
  • Cytogenetics Laboratory of the Pomeranian Medical University in Szczecin Genetic Counseling and Prenatal Diagnosis PUM
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Mędrek
  • Cytogenetics Laboratory of the Pomeranian Medical University in Szczecin Genetic Counseling and Prenatal Diagnosis PUM
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanisław Zajączek
  • Cytogenetics Laboratory of the Pomeranian Medical University in Szczecin Genetic Counseling and Prenatal Diagnosis PUM
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.12847/03141


The paper presents a description of the development of the human heart based on the present state of knowledge cytogenetics and molecular genetics. Despite the complexity of the genetic mechanisms described, the authors emphasize that it may be just a slice patterns in kardiogenezie. Aberrations and mutations lead to the formation of congenital heart defects in both isolated and components of genetic syndromes.

Keywords: CHD; cardiogenesis; genes; aberrations; mutations


  • 1. Optiz JM, Yost J, Clark FB. Overview: syndromes, developmental fields, and human cardiovascular morphogenesis of conge heart disease: twenty years progress in genetics and developmental biology. New York: Futura Publishing; 2000. OGoogle Scholar

  • 2. Lin AE, Pierpont ME (guest editors). Seminars in medical genetic aspects of cardiovascular malformations. Am J Med Genet 2000;97(4):235.OGoogle Scholar

  • 3. Gilbert-Barness E, Debich-Spicer D. Embryo and fetal pathology, an atlas with ultrasound correlation, Ch. 16. Cambridge: Cambridge University Press; 2004.O.Google Scholar

  • 4. Hutson MR, Kirby ML (2003). Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res C Embryo Today 69:2-13Google Scholar

  • 5. Copel JA, Cullen M, Green JJ, et al. The frequency of aneuploidy in prenatally diagnosed congenital heart disease: an indication for fetal karyotyping. Am J Obstet Gynecol 1988; 158:409.Google Scholar

  • 6. Srivastava D (2006). Making or breaking the heart: from lineage determination to morphogenesis. Cell 126: 1037-1048.Google Scholar

  • 7. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, et al. (2001). Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97-101.Google Scholar

  • 8. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S, et al. (2001). TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104: 619-629.Google Scholar

  • 9. Mori AD, Bruneau BG (2004). TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol 19: 211-215.CrossrefGoogle Scholar

  • 10. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003). Isll identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5: 877-889.CrossrefGoogle Scholar

  • 11. Chein KR, Olson EN (2002). Converging pathways and principles in heart development and disease: CV@CSH. Cell 100:153-162.Google Scholar

  • 12. Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Hunterss V, Dixon KL, Dunmore JH, Gimbrone MA Jr, , et al. (2000). A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24: 171-174.CrossrefGoogle Scholar

  • 13. Garratt AN, Ozcelik C, Birchmeier C (2003). ErbB2 pathways in heart and neural iseases. Trends Cardiovasc Med 13:80-86.CrossrefGoogle Scholar

  • 14. Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004). Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131: 5491-5502.Google Scholar

  • 15. Piedra ME, Icardo JM, Albajar M, Rodriguez-Rey JC, Ros MA (1998). Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94: 319-324.Google Scholar

  • 16. Casey B. Genetics Of human situs abnormalities. Am J Med Genet 2001; 1001 (4):356.Google Scholar

  • 17. Casey B. Two rights make a wrong: human left-right malformations. Hum Mol Genet 1998; 7(10):1565.Google Scholar

  • 18. Biben C, Harvey RP (1997). Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 11:1357-1369.CrossrefGoogle Scholar

  • 19. Franco D, Campione M (2003). The role of Pitx2 during cardiac development. Linkig lift-right signaling and congenital heart diseases. Trends Cardiovasc Med 13: 157-163.CrossrefGoogle Scholar

  • 20. Kathiriya IS, Srivastava D (2000). Left-right asymmetry and cardiac looping:implications for cardiac development and congenital heart disease, Am J Med Genet 97:271-279.CrossrefGoogle Scholar

  • 21. Moorman AF, Christoffels VM (2003). Cardiac chamber formation: development, genes,and evolution. Physiol Rev 83: 1223-1267.CrossrefGoogle Scholar

  • 22. Costantini DL, Arruda EP, Agarwal P, Kim K-H, Zhu Y, Leebel M. Cheng CW, Park CY, Pierce S, Guerchicoff A, et al. (2005). The homeodomain transcription factor Irx5 estblishes the mouse cardiac ventricular repolarization gradient. Cell 123: 347-358.Google Scholar

  • 23. Crotti L., Tester DJ, White WM, et al. (2013).Long Qt syndromeassociated mutations in intrauterine fetal death. JAMA;309(14);1473-82.Google Scholar

  • 24. Crotti L, Cefano G, Dagradi F, Schwartz PJ. (2008). Congenital long QT syndrome. Orphanet J Rare Dis. 3:18. Doi:10,1186/1750-1172-3-18.Web of ScienceGoogle Scholar

  • 25. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler Ca, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, et al. (2003). GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424: 443-447.Google Scholar

  • 26. Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-deVries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, et al. (2006). Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98: 1555-1563.CrossrefGoogle Scholar

  • 27. Grag V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005). Mutations in NOTCH1 cause aortic valve disease. Nature 437:270-274.Google Scholar

About the article

Received: 2014-02-07

Accepted: 2014-04-08

Published Online: 2015-12-30

Published in Print: 2014-03-01

Citation Information: Prenatal Cardiology, Volume 4, Issue 1, Pages 6–8, ISSN (Online) 2353-8201, DOI: https://doi.org/10.12847/03141.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in