Jump to ContentJump to Main Navigation
Show Summary Details

Present Environment and Sustainable Development

2 Issues per year

Open Access
Online
ISSN
2284-7820
See all formats and pricing




Erosion Assessment Modeling Using the Sateec Gis Model on the Prislop Catchment

Gheorghe Damian
  • Technical University of Cluj Napoca, North University Center of Baia Mare,
  • :
/ Daniel Năsui
  • PhD Student, West University of Timisoara, Geography Department
  • :
/ Floarea Damian
  • Technical University of Cluj Napoca, North University Center of Baia Mare,
/ Dan Ciurte
  • Technical University of Cluj Napoca, North University Center of Baia Mare
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/pesd-2014-0019

Abstract

The Sediment Assessment Tool for Effective Erosion Control (SATEEC) acts as an extension for ArcView GIS 3, with easy to use commands. The erosion assessment is divided into two modules that consist of Universal Soil Loss Equation (USLE) for sheet/rill erosion and the nLS/USPED modeling for gully head erosion. The SATEEC erosion modules can be successfully implemented for areas where sheet, rill and gully erosion occurs, such as the Prislop Catchment. The enhanced SATEEC system does not require experienced GIS users to operate the system therefore it is suitable for local authorities and/or students not so familiar with erosion modeling.

Keywords: erosion; soil; GIS; SATEEC; Prislop; catchment

References

  • Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., (1998), Large area hydrologic modeling and assessment part I: model development. Journal of American Water Resources Association 34 (1), 73- 89. [Crossref]

  • Flanagan, D.C., Nearing, M.A., (1995), USDA water erosion prediction project: hillslope profile and watershed model documentation. NSERL Report No. 10. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN 47907-1194.

  • Kang, H., Park, Y. S., Kim, N. W., Ok, Y. S., Jang, W. S., Ryu, J. C., Kim, K. S., Lim, K. J., (2010), Development and Application of Integrated System with SATEEC, nLS and USPED for Gully Erosion Evaluation. Journal of Korean Society on Water Quality, 26(4), 637-647

  • Lim, K. J., Choi, J. D., Kim, K. S., Sagong, M., Engel, B. A., (2003), Development of Sediment Assessment Tool for Effective Erosion Control (SATEEC) in Small Scale Watershed. Journal of Korean Society of Agricultural Engineers. 45(5), 85-96.

  • Lim, K. J., Sagong, M., Engel, B. A., Tang, Z., Choi, J., Kim, K. S.,(2005), GIS-based sediment assessment tool. CATENA 64, 61-80. [Crossref]

  • McCuen, R. H. & Spiess, J. M., (1995), Assessment of kinematic wave time of concentration. Journal of Hydrologic Engineering, 121(3), 256-266. [Web of Science]

  • Mitas, L. & Mitasova, H., (1998), Distributed erosion modeling for effective erosion prevention. Water Resources Research, 34(3), pp. 505-516. [Crossref]

  • Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L. R. (1996). Modeling topographic potential for erosion and deposition using GIS. Int. Journal of Geographical Information Science, 10(5), 629-641.

  • Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., Styczen, M.E., (1998), The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms 23, 527-544. [Crossref]

  • Wischmeier, W.H., Smith, D.D., (1978), Predicting rainfall erosion losses. A guide to conservation planning. The USDA Agricultural Handbook No. 537.


Published Online: 2014-08-15

Published in Print: 2014-05-01


Citation Information: Present Environment and Sustainable Development. Volume 8, Issue 1, Pages 217–224, ISSN (Online) 2284-7820, DOI: https://doi.org/10.2478/pesd-2014-0019, August 2014

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.