Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Present Environment and Sustainable Development

2 Issues per year

Open Access
Online
ISSN
2284-7820
See all formats and pricing
More options …

Areas with Flood Potential Risk in the Lower Uz Catchement (Romania). Protection and Mitigation Measurements

Ioana Delia Miftode
  • “Alexandru Ioan Cuza” University of Iasi, Faculty of Geography and Geology, Department of Geography, Bd. Carol I 20A, 700505, Iasi, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-22 | DOI: https://doi.org/10.2478/pesd-2018-0017

Abstract

The identification of areas with flood potential risk is important concerning the rational management of emergencies in case of floods. The most significant floods in the history of Romania occurred in the catchment basin of Siret (Uz River being an indirect tributary) and Prut. The analysis focused on the identification of flood potential risk index. The study involves the analysis of natural and anthropogenic physical and geographic factors: lithology, land declivity, soil texture, profile curvature and land use. The weighting of each analyzed factor for the contribution to floods was obtained using the AHP extension of the ArcGIS software. This methodology was applied for the lower Uz river basin, situated downstream from Lake Poiana Uzului. The catchment basin of Uz was affected by major floods in the summer of 2005, while the Uz River recorded a maximum historic discharge of 132 m3/s, at the precipitation station of Darmanesti, situated upstream from the Poiana Uzului reservoir. The consequences of the historic high water were serious. Extended surfaces within the major riverbed were flooded, numerous houses were partially damaged and some destroyed. The study highlights that the highest values of flooding index range between 3.96 and 4.71 and that they affect 14% of the entire surface of the studied area.

Keywords: AHP (Analytic Hierarchy Process); GIS; Floods; Weighting; Hydrological risk

References

  • Barbulescu, A., Maftei, C. (2015). Modeling the climate in the area of Techirghiol Lake (Romania). Romanian Journal of Physics, 60(7-8), 1163-1170.Google Scholar

  • Birsan, M.V., Zaharia, L., Chendes, V., Branescu, E. (2014). Seasonal trends in Romanian streamflow. Hydrological Processes, 28(15), 4496-4505.Google Scholar

  • Čech, M., Čech, P. (2013). The role of floods in the lives of fish-eating birds: predators loss or benefit?. Hydrobiologia, 717(1), 203-211.Google Scholar

  • Chendes, V., Corbus, C., Petras, N. (2015). Characterisyics of April 2005 flood event and affected areas in the Timis-Bega Plain (Romania) analysed by hydrologic, hydraulic and GIS methods. 15th International Multidisciplinary Scientific GeoConference. SGEM, 1, 121-128.Google Scholar

  • Chirila, G., Corbus, C., Mic, R., Busuioc, A. (2008). Assessment of the Potential Impact of Climate Change upon Surface Water Resources in the Buzau and Ialomita Watersheds from Romania in the Frame of Cecilia Project. BALWOIS 2008, FY Republic of Macedonia, Ohrid, 1-7.Google Scholar

  • Cojoc, G., Romanescu, G., Tirnovan, A. (2015). Exceptional floods on a developed river. Case study for the Bistrita River from the Eastern Carpathians (Romania). Natural Hazards, 77(3), 1421-1451.Google Scholar

  • Corduneanu, F., Vintu, V., Balan, I., Crenganis, L., Bucure, D. (2016). Impact of drought on water resources in north-eastern Romania. Case study - the Prut River. Environmental Engineering & Management Journal (EEMJ), 15(16), 1213-1222.Google Scholar

  • Corduneanu, F., Bucur, D., Cimpeanu, S.M., Apostol, I.C., Strugariu, Al. (2016). Hazards Resulting from Hydrological Extremes in the Upstream Catchment of the Prut River. Water Resources, 43(1), 42-47.Google Scholar

  • Costache, A., Comănescu, L., Nedelea, A. (2017). Assessing Perception of Floods within the Framework of VULMIN Project: Methodological Remarks. Annals of Valahia University of Targoviste, Geographical Series, 17(2), 145-151. doi:CrossrefGoogle Scholar

  • Diaconu, D.C., Andronache, I., Ahammer, H., Ciobotaru, A.M., Zelenakova, M., Dinescu, R., Pozdnyakov, A.V., Chupikova, S.A. (2017). Fractal drainage model - a new approach to determinate the complexity of watershed. Acta Montanistica Slovaca, 22(1), 12-21.Google Scholar

  • Hapciuc, O.E., Romanescu, G., Minea, I., Iosub, M., Enea, A., Sandu, I. (2016). Flood susceptibility analysis of the cultural heritage in the Sucevita catchment (Romania). International Journal of Conservation Science, 7(2), 501-510.Google Scholar

  • Hapciuc, O.E., Minea, I., Romanescu, G., Tomasciuc, A.I. (2015). Flash flood risk management for small basins in mountain-plateau transition zone. Case study for Sucevita catchment (Romania). International Multidisciplinary Scientific GeoConference, SGEM, 301 - 308.Google Scholar

  • Komínková, D., Nábělková, J., Vitvar, T. (2015). Effects of combined sewer overflows and Storm water drains on metal bioavailability in small urban streams (Prague metropolitan area, Czech Republic). Journal of Soils and Sediments, 1-15, DOI:10.1007/s11368-015-1327-8.CrossrefGoogle Scholar

  • Langovic, M., Dedjanski, V. (2017). Water Supply in the Republic of Serbia - State and Perspectives. Annals of Valahia University of Targoviste, Geographical Series, 17(1), 28-36, doi:CrossrefGoogle Scholar

  • Li, Z., Zhang, Y., Zhu, Q., He, Y., Uao, W. (2015). Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology, 228(1), 462-469.Google Scholar

  • Li, Z., Zhang, Y., Zhu, Q., Yang, S., Li, H., Ma, H. (2016). A gully erosion assessmentmodel for the Chinese Loess Plateau based on changes in gully length and area. Catena, 148, 195-203. Doi.org/10.1016/j.catena.2016.04.018.CrossrefGoogle Scholar

  • Lóczy, D., Mátrai, I., Fehér, G., Váradi, Z. (2014). Ecological Evaluation of the Baja- Bezdan Canal (Hungary-Serbia) for Reconstruction Planning. Water Resource Management, 28(3), 815-831.Google Scholar

  • Mierla, M., Romanescu, G., Nichersu, I., Grigoras, I. (2015). Hydrological risk map for the Danube delta - a case study of floods within the fluvial delta. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1), 98-104.Google Scholar

  • Miftode, I.D., Romanescu, G. (2016). The variation of the liquid monthly average flow in the hydrographic basin of the Uz river. Proceedings of the “Dimitrie Cantemir” Geographic Seminar, 41, 27-36.Google Scholar

  • Miftode, I.D., Romanescu, G., Profir, O. (2016). The morphometric aspects of the Uz hydrographic basin. Proceedings of the “Dimitrie Cantemir” Geographic Seminar, 41, 37-46.Google Scholar

  • Mihu-Pintilie, A., Romanescu, G. (2011). Determining the potential hydrological risk associated to maximum flow in small hydrological sub-basins with torrential character of the river Bahlui. Present Environment and Sustainable Development, 5(2), 255-266.Google Scholar

  • Mihu-Pintilie, A., Romanescu, G., Stoleriu, C. (2014). The seasonal changes of the temperature, pH and dissolved oxygen in the Cuejdel Lake, Romania. Carpathian Journal of Earth and Environmental Sciences, 9(2), 113-123.Google Scholar

  • Mu, Y., Mu, X. (2013). Energy conservation in the Earth's crust and climate change. Journal of the Air & Waste Management Association, 63(2), 150-160.Google Scholar

  • Radevski, I., Gorin, S. (2017). Floodplain analysis for different return periods of river Vardar in Tikvesh valley (Republic of Macedonia). Carpathian Journal of Earth and Environmental Sciences, 12(1), 179-187.Google Scholar

  • Raška, P. (2015). Flood risk perception in Central-Eastern European members states of the EU: a review. Natural Hazards, 79(3), 2163-2179.Google Scholar

  • Reti, K.O., Malos, C.V., Manciula, I.D. (2014). Hydrological risk study in the Damuc village, the Neamt county. Journal of Environmental Protection and Ecology, 15(1), 142-148.Google Scholar

  • Romanescu, G. (2003). Hidrologie generală. Editura TERRA NOSTRA, Iaşi.Google Scholar

  • Romanescu, G. (2005). Riscul inundaţiilor in amonte de lacul Izvorul Muntelui si efectul imediat asupra trasaturilor geomorfologice ale albiei, Riscuri şi catastrofe, 4, 117-124.Google Scholar

  • Romanescu, G. (2006). Complexul lagunar Razim-Sinoie. Studiu morfohidrografic. Editura Universităţii „Alexandru Ioan Cuza”, Iaşi.Google Scholar

  • Romanescu, G., Nistor, I. (2011). The effect of the July 2005 catastrophic inundations in the Siret River’s Lower Watershed, Romania. Natural Hazards, 57, 345-368. Doi: 10.1007/s11069-010-9617-3.CrossrefGoogle Scholar

  • Romanescu, G., Stoleriu, C., Romanescu, A.M. (2011). Water reservoirs and the risk of accidental flood occurrence. Case study: Stanca-Costesti reservoir and the historical floods of the Prut river in the period July-August 2008, Romania. Hydrological Processes, 25(13), 2056-2070.Google Scholar

  • Romanescu, G., Cotiuga, V., Asandulesei, A., Stoleriu, C. (2012). Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils. Case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania). Hydrology and Earth System Sciences, 16, 953-966.Google Scholar

  • Romanescu, G., Zaharia, C., Stoleriu, C. (2012). Long-term changes in average annual liquid flow river Miletin (Moldavian Plain). Carpathian Journal of Earth and Environmental Sciences, 7(1), 161-170.Google Scholar

  • Romanescu, G. (2013). Alluvial Transport Processes and the Impact of Anthropogenic Intervention on the Romanian Littoral of the Danube delta. Ocean & Coastal Management, 73, 31-43.Google Scholar

  • Romanescu, G., Stoleriu, C. (2013a). Causes and Effects of the Catastrophic Flooding on the Siret River (Romania) in July-August 2008. Natural Hazards, 69, 1351-1367.Google Scholar

  • Romanescu, G., Stoleriu, C. (2013b). An inter-basin backwater overflow (the Buhai Brook and the Ezer reservoir on the Jijia River, Romania). Hydrological Processes, 28(7), 3118-3131.Google Scholar

  • Romanescu, G., Stoleriu, C. (2014). Anthropogenic interventions and hydrological-risk phenomena in the fluvial-maritime delta of the Danube (Romania). Ocean & Coastal Management, 102, 123-130.Google Scholar

  • Romanescu, G., Sandu, I., Stoleriu, C., Sandu, I.G. (2014). Water Resources in Romania and Their Quality in the Main Lacustrine Basins. Rev. Chim. (Bucharest), 65(3), 344-349.Google Scholar

  • Romanescu, G., Zaharia, C., Sandu, A.V., Juravle, D.T. (2015). The annual and multiuannual variation of the minimum discharge in the Miletin catchment (Romania). An important issue of water conservation. International Journal of Conservation Science, 6(4), 729-746.Google Scholar

  • Romanescu, G., Tirnovan, A., Cojoc, G.M., Sandu, I.G. (2016). Temporal variability of minimum liquid discharge in Suha basin. Secure water resources and preservation possibilities. International Journal of Conservation Science, 7(4), 1135-1144.Google Scholar

  • Romanescu, G., Stoleriu, C. (2017). Exceptional floods in the Prut basin, Romania, in the context of heavy rains in the summer of 2010. Natural Hazards and Earth System Sciences, 17, 381-396.Google Scholar

  • Romanescu, G., Hapciuc, O.E., Minea, I., Iosub, M. (2017). Flood vulnerability assessment in the mountain-plateau transition zone. Case study for Marginea village (Romania). Journal of Flood Risk Management, Doi: 10.1111/jfr3.12249.CrossrefGoogle Scholar

  • Saaty, T.L. (1980). The Analytic Hierarcy Process, McGraw-Hill: New York, NY, USA. Google Scholar

  • Serban, G., Rus, I., Vele, D., Bretcan, P., Alexe, M., Petrea, D. (2016). Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: case study in the north-east of Apuseni Mountains, Transylvania. Natural Hazards, 82(3), 1817-1832.Google Scholar

  • Siret Water Basin Administration, Archive. (2015). Raport. Siret Water Basin Administration, Bacau.Google Scholar

  • Smith, G. (2003). Flash flood potential: determining the hydrologic response of FFMP basins to heavy rain by analyzing their physiographic characteristics. http://www.cbrfc.noaa.gov/papers/ffp_wpap.pdf.Google Scholar

  • Solín, Ĺ., Feranec, J., Nováčk, J. (2011). Land cover changes in small catchments in Slovakia during 1990-2006 and their effects on frequency of flood events. Natural Hazards, 56, 195-214.Google Scholar

  • Stancalie, G., Craciunescu, V., Nertan, A., Mihailescu, D. (2012). Contribution of satellite data to flood risk mapping in Romania. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 899-902.Google Scholar

  • Su, X., Nilsson, C., Pilotto, F., Liu, S., Shi, S., Zeng, B. (2017). Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir. Science of the Total Environment, 599-600, 1485-1492.Google Scholar

  • Tirnovan, A., Cojoc, G.M., Romanescu, G., Obreja, F. (2014a). Predicting the potential index of major floods production in the Suha basin (Suha Bucovineana). 2nd International Conference - Water resources and wetlands. Tulcea, 539 -545.Google Scholar

  • Tirnovan, A., Romanescu, G., Cojoc, G.M. (2014b). The impact of Heavy Rainfall in the Hydrological regime of Suha River Basin in 2006. Present Environment and Sustainable development, 8(2), 21-31.Google Scholar

  • Yang, H.C., Wang, C.Y., Yang, J.X. (2014). Applying image recording and identification for measuring water stages to present flood hazards. Natural Hazards, 74(2), 737-754.Google Scholar

About the article

Published Online: 2018-06-22

Published in Print: 2018-06-01


Citation Information: Present Environment and Sustainable Development, Volume 12, Issue 1, Pages 215–227, ISSN (Online) 2284-7820, DOI: https://doi.org/10.2478/pesd-2018-0017.

Export Citation

© 2018 Ioana Delia Miftode, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in