Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina


IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 2, Issue 1

Issues

Volume 13 (2015)

Glass-forming ability and thermal stability of Fe62Nb8−xZrxB30 and Fe72Zr8B20 amorphous alloys?

M. Shapaan / J. Lábár / L. Varga
  • Research Institute for Solid State Physics and Optics, P.O.B. 49, H-1525, Budapest, Hunaarian Academy of Sciences, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Lendvai
Published Online: 2004-03-01 | DOI: https://doi.org/10.2478/BF02476275

Abstract

Glass-forming ability (GFA) and thermal stability of Fe62Nb8B30, Fe62Nb6Zr2B30 and Fe72Zr8B20 at % amorphous alloys were investigated by calorimetric (DSC and DTA) measurements. The crystallization kinetics was studied by DSC in the mode of continuous versus linear heating and it was found that both the glass transition temperature, Tg, and the crystallization peak temperature, Tp, display strong dependence on the heating rate. The partial replacement of Nb by Zr leads to lower Tg and Tx temperatures and causes a decrease of the supercooled liquid region. JMA analysis of isothermal transformation data measured between Tg and Tx suggests that the crystallization of the Fe62Nb8B30 and Fe62Nb6Zr2B30 amorphous alloys take place by three-dimensional growth with constant nucleation rate. Nb enhances the precipitation of the metastable Fe23B6 phase and stabilizes it up to the third crystallization stage. Zr addition increases the lattice constant of Fe23B6 and, at the same time, decreases the grain size.

Keywords: amorphous alloys; bulk glass-forming ability; crystallization; X-ray diffraction; TEM

Keywords: 61.43.Dq.; 64.70.Pf; 81.05.Kf

  • [1] S.J. Pang, T. Zhang, K. Asami and A. Inoue: “Synthesis of Fe−Cr−Mo−C−B−P bulk metallic glasses with high corrosion resistance”, Acta Mater., Vol. 50, (2002), pp. 489. http://dx.doi.org/10.1016/S1359-6454(01)00366-4CrossrefGoogle Scholar

  • [2] V.I. Tkatch, A.M. Grishin and S.I. Khartev: “Delayed nucleation in Fe40Co40P14B6 metallic glass”, Mater. Sci. Eng., Vol. 337, (2002), pp. 187. http://dx.doi.org/10.1016/S0921-5093(02)00021-7CrossrefGoogle Scholar

  • [3] H. Grahl, S. Roth, J. Eckert and L. Schultz: “Stability and magnetic properties of Fe-based amorphous alloys with supercooled liquid region”, Magn. Magn. Mater., Vol. 254, (2003), pp. 23. http://dx.doi.org/10.1016/S0304-8853(02)00738-2CrossrefGoogle Scholar

  • [4] A. Inoue: “Bulk Amorphous Alloys, Preparation and Fundamental Characteristics”, Mater. Sci. Foundations, Vol. 4, (1998), pp. 3. Google Scholar

  • [5] Z.P. Lu and C.T. Liu: “A new glass-forming ability criterion for bulk metallic glasses”, Acta Mater., Vol. 50, (2002), pp. 3501. http://dx.doi.org/10.1016/S1359-6454(02)00166-0CrossrefGoogle Scholar

  • [6] T.D. Shen and R.B. Schwarz: “Bulk ferromagnetic glasses prepared by flux melting and water quenched”, J. Appl. Pys., Vol. 81, (1997), pp. 9328. Google Scholar

  • [7] J. Labar: “Process Diffraction: A computer program to process electron diffraction patterns from polycrystalline or amorphous samples”, In: L. Frank and F. Ciampor (Eds.): Proc. EUREM 12, Brno, Vol. 3, Brno, 2000, pp. 1397. Google Scholar

  • [8] D.S. dos Santos and D.R. dos Santos: “Crystallization kinetics of Fe−B−Si metallic glasses”, J.Non-Cryst.Sol., Vol. 304, (2002), p. 56. http://dx.doi.org/10.1016/S0022-3093(02)01004-9CrossrefGoogle Scholar

  • [9] I.C. Rho, C.S. Yoon, C.K. Kim, T.Y. Byun and K.S. Hong: “Microstructure and crystallization kinetics of amorphous metallic alloy: Fe54Co26Si6B14”, J. Non-Cryst. Sol., Vol. 316, (2003), pp. 289. http://dx.doi.org/10.1016/S0022-3093(02)01625-3CrossrefGoogle Scholar

  • [10] H.E. Kissinger: “Reaction kinetics in differential thermal analysis”, Anal. Chem., Vol. 29, (1957), pp. 1702. http://dx.doi.org/10.1021/ac60131a045CrossrefGoogle Scholar

  • [11] M. Gogebakna, P.J. Warren and B. Cantor: “Crystallization behavior of Al85Y11Ni4 alloy”, Mater. Sci. Eng., Vol. 226, (1997), pp. 168. http://dx.doi.org/10.1016/S0921-5093(96)10611-0CrossrefGoogle Scholar

  • [12] M. Avrami: “Kinetics of phase change. III”, Chem. Phys.,. Vol. 9, (1941), pp. 177. http://dx.doi.org/10.1063/1.1750872CrossrefGoogle Scholar

  • [13] Y.J. Liu and I.T.H. Chang: “The correlation of microstructural development and thermal stability of mechanically alloyed multicomponent Fe−Co−Ni−Zr−B alloys”, Acta Mater., Vol. 50, (2002), pp. 2747. http://dx.doi.org/10.1016/S1359-6454(02)00118-0CrossrefGoogle Scholar

  • [14] J.W. Christian: “The Theory of Transformations in Metals and Alloys”, 2nd Ed., Pergamon, Oxford, United Kingdom, 1975. Google Scholar

  • [15] D.H. Ping, K. Hono, H. Kanekiyo and S. Hirosawa: “Microstructure evolution of Fe3B/Nd2Fe14B nanocomposite magnets microalloyed with Cu and Nb”, Acta Mater., Vol. 47, (1999), pp. 4641. http://dx.doi.org/10.1016/S1359-6454(99)00330-4CrossrefGoogle Scholar

  • [16] M. Imafuku, S. Sato, H. Koshiba, E. Matsubara and A. Inoue: “Structural variation of Fe−Nb−B metallic glasses during crystallization process”, Scripta Mater., Vol. 44, (2001), pp. 2369. http://dx.doi.org/10.1016/S1359-6462(01)00776-XCrossrefGoogle Scholar

  • [17] A.K. Panda, B. Ravikumar, S. Basu and A. Mitra: “Crystallization and soft magnetic properties of rapidly solidified Fe73.5Nb3Cu1Si22.5−xBx alloys”, Magn. Magn. Mater., Vol. 260, (2003), pp. 70. http://dx.doi.org/10.1016/S0304-8853(02)01092-2CrossrefGoogle Scholar

  • [18] H.P. Klug and L.E. Alexander: “X-ray diffraction procedes for polycrystalline and amorphous materials”, Wiley, New York, 1974. Google Scholar

  • [19] H. Natter, M. Schmelzer, M.S. Loffler, C.E. Krill, A. Fitch and R. Hempelmann: “Grain-growth kinetics and nanocrystalline iron studied in situ by synchrotron realtime X-ray diffraction, Phys. Chem., Vol. 104, (2000), pp. 2467. Google Scholar

About the article

Published Online: 2004-03-01

Published in Print: 2004-03-01


Citation Information: Open Physics, Volume 2, Issue 1, Pages 104–119, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/BF02476275.

Export Citation

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anastasia Tsesarskaya, Vladimir V. Tkachev, Nikita Ilin, Galina S. Kraynova, and Vladimir S. Plotnikov
Defect and Diffusion Forum, 2018, Volume 386, Page 167

Comments (0)

Please log in or register to comment.
Log in