Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
See all formats and pricing
More options …
Volume 2, Issue 1


Volume 13 (2015)

On the mechanism of the runaway of electrons in a gas: The upper branch of the paschen curve

Alexey Tkachev / Sergey Yakovlenko
Published Online: 2004-03-01 | DOI: https://doi.org/10.2478/BF02476277


Basing on the simulation results, it is shown that the Townsend mechanism of electron multiplication in a gas at sufficiently large interelectrode distances is valid at least up to such large values of E/p at which relativistic electrons are generated. Correspondingly, the runaway electron producing in a gas is determined not by the local criteria accepted presently, but by the ratio of interelectrode distance and the characteristic electron multiplication length. It is shown that the critical discharge voltage U, at which the runaway electrons appear in a given gas, is a function of the product of the interelectrode distance by the gas pressure. This function (U-pd dependence) defines not only well-known Paschen curve but also an additional branch, which describes the absence of a self-sustained discharge at a high voltages sufficiently rapidly supplied across the electrodes. Critical discharge voltage dependence for helium and xenon are presented.

Keywords: runaway electrons; electron multiplication; Paschen curve; gas discharge

Keywords: 51.50.+v

  • [1] R.G. Giovanelli: “Electron Energies resulting from an Electric Field in a Higly Ionized Gas”, Philos. Mag., Vol. 40, (1949), pp. 206–214. Google Scholar

  • [2] H. Dreicer: “Electron and Ion Runaway in a Fully Ionized Gas. I, II.”, Phys. Rev., Vol. 115, (1959), pp. 238–249; Phys. Rev., Vol. 117, (1960), pp. 329–342. http://dx.doi.org/10.1103/PhysRev.115.238CrossrefGoogle Scholar

  • [3] R.M. Kurlsrud, Y.C. Sun, N.K. Winson, and H.A. Fallon: “Runaway Electrons in a Plasma”, Phys. Rev. Lett., Vol. 31, (1973), pp. 690–693. http://dx.doi.org/10.1103/PhysRevLett.31.690CrossrefGoogle Scholar

  • [4] A.V. Gurevich: “On the theory of runaway electrons”, Zh. Éksp. Teor. Fiz., Vol. 39, (1960), pp. 1296–1307; Sov. Phys. JETP, Vol. 12, (1960), pp. 904–912. Google Scholar

  • [5] V.S. Marchenko and S. I. Yakovlenko: “About influence of deviation of electron distributions from Maxwell distribution on a degree of ionization and accuracy of diagnostics of impurity in plasma with Joule heating”, Fiz. Plazmy (Moscow) Vol. 5, (1979), pp. 590–599; Sov. J. Plasma Phys., Vol. 5, (1979), pp. 331–340. Google Scholar

  • [6] L.P. Babich, T.V. Loiko and V.A. Tsukerman: “High-voltage nanosecond discharge in dense gases at big overvoltage, developing in a mode of electron runaway”, Usp. Fiz. Nauk, Vol. 160(7), (1990), pp. 49–82; Sov. Phys. Usp., Vol. 33, (1990), pp. 521–560. CrossrefGoogle Scholar

  • [7] Yu.D. Korolev and G.A. Mesyats: The Physics of Pulse Breakdown, Nauka, Moscow, 1991. Google Scholar

  • [8] G.V. Kolbychev, P.D. Kolbycheva and I.V. Ptashnik: “Glow discharge with runaway electrons at borderline voltage”, Zh. Tekh. Fiz., Vol. 66(2), (1996), pp. 59–64; Tech. Phys., Vol. 41, (1996), pp. 144–148. Google Scholar

  • [9] A.R. Sorokin: “Forming of electron beams in open discharge”, Pis'ma Zh. Tekh. Fiz., Vol. 26(24) (2000), pp. 89–94; Tech. Phys. Lett., Vol. 26, (2000), pp. 721–725. Google Scholar

  • [10] A.R. Sorokin: “Whether the open discharge photoelectronic is?’, Pis'ma Zh. Tekh. Fiz., Vol. 28(9), (2002), pp. 14–21; Tech. Phys. Lett., Vol. 28, (2002), pp. 361–367. Google Scholar

  • [11] A.P. Bokhan and P.A. Bokhan: “The mechanism of the anomalous high efficiency of an electronic beam generation in the open discharge”, Pis'ma Zh. Tekh. Fiz., Vol. 28(11), (2002), pp. 21–27; Tech. Phys. Lett., Vol. 28, (2002), pp. 454–459. Google Scholar

  • [12] V.I. Derzhiev, V.F. Tarasenko, S.I. Yakovlenko and A.M. Yancharina: “Penning plasma lasers on transitions in helium and a neon”, In: S.I. Yakovlenko (Ed.): Plasma Lasers of Visual and Near Ultraviolet Ranges, Nauka, Moscow, 1989, pp. 5–43. Google Scholar

  • [13] S.I. Yakovlenko: “Gas and plasma lasers”, In: V.E. Fortov (Ed.): An Encyclopedia of Low-Temperature Plasma, Nauka/Interperiodika, Moscow, 2000, p. 262–291. Google Scholar

  • [14] Yu.P. Raizer: The Physics of Gas Discharge, 2nd Ed., Nauka, Moscow, 1992. Google Scholar

  • [15] A.N. Tkachev and S.I. Yakovlenko: “Cathode layer parameters in high-pressure Xe excilamp”, Proc. SPIE, Vol. 4747, (2002), pp. 271–278; Laser Phys. Vol. 12(7), (2002), pp. 1022–1028. Google Scholar

  • [16] E. Krishnakumar and S.K. Srivastava: “Ionization cross sections of rare-gas atoms by electron impact”, J. Phys. B, Vol. 21(6), (1988), pp. 1055–1082. http://dx.doi.org/10.1088/0953-4075/21/6/014CrossrefGoogle Scholar

  • [17] D.V. Fursa and I. Bray: “Calculation of electron-helium scattering”, Phys. Rev. A, Vol. 52(2), (1995), pp. 1279–1297. http://dx.doi.org/10.1103/PhysRevA.52.1279CrossrefGoogle Scholar

  • [18] J.C. Nickel, K. Imre, D.F. Register and S. Trajmar: “Total electron scattering cross sections: I. He, Ne, Ar, Xe”, J. Phys. B, Vol. 18(1), (1985), pp. 125–133. http://dx.doi.org/10.1088/0022-3700/18/1/015CrossrefGoogle Scholar

  • [19] A.L. Ward: “Calculation of Cathode-Fall Characteristics”, Jorn. Appl. Physics. V., Vol. 33(9), (1962), pp. 2789–2794. http://dx.doi.org/10.1063/1.1702550CrossrefGoogle Scholar

  • [20] F.M. Penning: “Nieuwe metingen over de doorslagspanningen van edelgassen”, Physica. V., Vol. 12(4), (1932), pp. 65–81. Google Scholar

  • [21] A.N. Dikdji and B.N. Kl'anfeld: “Voltage of the discharge ignition in He, Ne, Ar, Kr and Xe at low pressures”, Pis'ma Zh. Tekh. Fiz., Vol. 28(6), (1955), pp. 1038–1044. Google Scholar

  • [22] L.G. Guseva and B.N. Kl'anfeld: “Voltage of the discharge ignition in mercury vapours”, Pis'ma Zh. Tekh. Fiz., Vol. 24(7), (1954), pp. 1169–1178. Google Scholar

  • [23] A.N. Tkachev and S.I. Yakovlenko: “On the mechanismof the runaway of electrons in a gas”, JETP Letters, Vol. 77(5), (2003), pp. 221–225. http://dx.doi.org/10.1134/1.1574835CrossrefGoogle Scholar

  • [24] V.F. Tarasenko, S.I. Yakovlenko, V.M. Orlikovskii, A.N. Tkachev and S.A. Shunailov: “Production of Powerful Electron Beams in Dense Gases”, JETP Letters, Vol. 77(11), (2003), pp. 611–615. http://dx.doi.org/10.1134/1.1600816CrossrefGoogle Scholar

About the article

Published Online: 2004-03-01

Published in Print: 2004-03-01

Citation Information: Open Physics, Volume 2, Issue 1, Pages 132–146, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/BF02476277.

Export Citation

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Victor F. Tarasenko and Sergei I. Yakovlenko
Plasma Devices and Operations, 2005, Volume 13, Number 4, Page 231
V. F. Tarasenko and S. I. Yakovlenko
Physics of Wave Phenomena, 2008, Volume 16, Number 3, Page 207
Victor F Tarasenko and Sergei I Yakovlenko
Physica Scripta, 2005, Volume 72, Number 1, Page 41
Alexey Tkachev and Sergei Yakovlenko
Open Physics, 2004, Volume 2, Number 4

Comments (0)

Please log in or register to comment.
Log in