Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
See all formats and pricing
More options …
Volume 2, Issue 1


Volume 13 (2015)

A system of units compatible with geometry

Bernard Jancewicz
Published Online: 2004-03-01 | DOI: https://doi.org/10.2478/BF02476281


Alternative system of fundamental units: length, time, action, electrical charge is presented instead of the present one: length, time, mass and electrical current. It contains more quantities which are scalars under scalings. Then it is possible to recognize from the unit, what kind of a geometric quantity is a given physical quantity. This is the reason why the new system of units is called compatible with geometry.

Keywords: System of units; fundamental units; multivectors

Keywords: 02.40Ma; 06.20Fn

  • [1] J.A. Schouten: Tensor Analysis for Physicists, Dover Publ., New York, 1989. Google Scholar

  • [2] E.J. Post: “Physical dimensions and covariance”, Found. Phys., Vol. 12, (1982), pp. 169–195. http://dx.doi.org/10.1007/BF00736847CrossrefGoogle Scholar

  • [3] C. Misner, K. Thorne and J.A. Wheeler: Gravitation, Freeman and Co., San Francisco, 1973. Google Scholar

  • [4] W.L. Burke: “Spacetime, Geometry, Cosmology, University Science Books, Mill Valley, 1980. Google Scholar

  • [5] W.L. Burke: Applied Differential Geometry, Cambridge University Press, Cambridge, 1985. Google Scholar

  • [6] P. Lounesto, R. Mikkola and V. Vierros. J. comp. Math. Sci. Teach., Vol. 9, (1989), pp. 93. Google Scholar

  • [7] B. Jancewicz: “A variable metric electrodynamics. The Coulomb and Biot-Savart laws in anisttropic media”, Ann. of Phys., Vol. 245, (1996), pp. 227–274. http://dx.doi.org/10.1006/aphy.1996.0009CrossrefGoogle Scholar

  • [8] B. Jancewicz: “The extended Grassmann algebra ofR 3”, In: W.E. Baylis (Ed.): Clifford (Geometric) Algebras, Birkhäuser, Boston, 1996, pp. 389–421. Google Scholar

  • [9] P.A.M. Dirac: “The monopole concept”, Int. J. Theor. Phys., Vol. 17, (1978), pp. 235–247 http://dx.doi.org/10.1007/BF00672870CrossrefGoogle Scholar

  • [10] C. von Westensholz: Differential Forms in Mathematical Physics, North-Holland, Amsterdam, 1978. Google Scholar

  • [11] K. von Klitzing, G. Dorda, M. Pepper: “New method for high accuracy determination of the fine structure constant based on quantized Hall resistance”, Phys. Rev. Lett., Vol. 45, (1980), pp. 494–497. http://dx.doi.org/10.1103/PhysRevLett.45.494CrossrefGoogle Scholar

  • [12] T. Fulton, F. Rohrlich, L. Witten: “Conformal invariance in physics”, Rev. Mod. Phys., Vol. 34, (1962), pp. 442–457. http://dx.doi.org/10.1103/RevModPhys.34.442CrossrefGoogle Scholar

About the article

Published Online: 2004-03-01

Published in Print: 2004-03-01

Citation Information: Open Physics, Volume 2, Issue 1, Pages 204–219, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/BF02476281.

Export Citation

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in