Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina


IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 2, Issue 1

Issues

Volume 13 (2015)

Critical fields of a superconducting cylinder

G. Zharkov
Published Online: 2004-03-01 | DOI: https://doi.org/10.2478/BF02476282

Abstract

The self-consistent solutions of the nonlinear Ginzburg-Landau equations, which describe the behavior of a superconducting mesoscopic cylinder in an axial magnetic field H (provided there are no vortices inside the cylinder), are studied. Different, vortex-free states (M-, e-, d-, p-), which exist in a superconducting cylinder, are described. The critical fields (H 1, H 2, H p, H i, H r), at which the first or second order phase transitions between different states of the cylinder occur, are found as functions of the cylinder radius R and the GL-parameter $$\kappa $$ . The boundary $$\kappa _c (R)$$ , which divides the regions of the first and second order (s, n)-transitions in the icreasing field, is found. It is found that at R→∞ the critical value, is $$\kappa _c = 0.93$$ . The hysteresis phenomena, which appear when the cylinder passes from the normal to superconducting state in the decreasing field, are described. The connection between the self-consistent results and the linearized theory is discussed. It is shown that in the limiting case $$\kappa \to {1 \mathord{\left/ {\vphantom {1 {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }}$$ and R ≫ λ (λ is the London penetration length) the self-consistent solution (which correponds to the socalled metastable p-state) coincides with the analitic solution found from the degenerate Bogomolnyi equations. The reason for the existence of two critical GL-parameters $$\kappa _0 = 0.707$$ and $$\kappa _0 = 0.93$$ in, bulk superconductors is discussed.

Keywords: GL-equations; critical fields; hysteresis

Keywords: 74.25.-q; 74.25. Dw

  • [1] V.L. Ginzburg and L.D. Landau: “To the theory of superconductivity”, Zh. Exp. Teor. Fyz., Vol. 20, (1950), pp. 1064–1082. Google Scholar

  • [2] A.A. Abrikosov: Fundamentals of the Theory of Metals, North-Holland, Amsterdam, 1988. Google Scholar

  • [3] M. Tinkham: Introduction to Superconductivity, McGraw Hill, New York, 1975. Google Scholar

  • [4] P.G. deGennes, Superconductivity of Metals and Alloys, Addison-Wesley, New York, 1989. Google Scholar

  • [5] D. Saint-James, G. Sarma, E.J. Thomas, Type II superconductivity, Pergamon, Oxford, 1969. Google Scholar

  • [6] G.F. Zharkov: “First and second order phase transitions and magnetic hysteresis in a superconducting plate”, J. Low Temp. Phys., Vol. 130, (2003), pp. 45–67. http://dx.doi.org/10.1023/A:1021845418088CrossrefGoogle Scholar

  • [7] A.Yu. Tsvetkov, G.F. Zharkov, V.G. Zharkov: “Superconducting plate in a magnetic field”, Krat. Soob. Fyz. FIAN, Vol. 2, (2003), pp. 42–50. Google Scholar

  • [8] G.F. Zharkov, V.G. Zharkov, A.Yu. Tsvetkov: “GL-calculations, for superconducting cylinder in a magnetic field”, Phys. Rev. B, Vol. 61, (2000), pp. 12293–12312. http://dx.doi.org/10.1103/PhysRevB.61.12293CrossrefGoogle Scholar

  • [9] G.F. Zharkov: “The emergence of superconductivity and hysteresis in a type-I superconducting cylinder”, Zh. Exp. Teor. Fyz., Vol. 122, (2002), pp. 600–609. Google Scholar

  • [10] G.F., Zharkov, V.G. Zharkov, A.Yu. Tsvetkov: “Self-consistent solutions of GL-equations and superconducting edge-states in a magnetic field” Krat. Soob. Fyz. FIAN, (2001), pp. 35–48; “One-dimensional solutions of GL-equations for superconducting cylinder in magnetic field”, ibid, N 12, pp. 31–38 (2001). Google Scholar

  • [11] G.F. Zharkov: “Transitions of I- and II-order in magnetic field for superconducting cylinder obtained from self-consistent solution of GL-equations”, Phys. Rev. B, Vol. 63, (2001), pp. 224513–224519. http://dx.doi.org/10.1103/PhysRevB.63.224513CrossrefGoogle Scholar

  • [12] V.L. Ginzburg: “The destruction and onset of superconductivity in magnetic field”, Zh. Exp. Teor. Fyz., Vol 34, pp. 113–125. Google Scholar

  • [13] D. Saint-James, P. deGennes: “Onset of superconductivity in decreasing field”, Phys. Lett., Vol. 7, (1963), pp. 306–308. http://dx.doi.org/10.1016/0031-9163(63)90047-7CrossrefGoogle Scholar

  • [14] D. Saint-James: “Etude du champ critique Hc3 dans une geometrie cylindrique”, Phys. Lett., Vol. 15, (1965), pp. 13–15. http://dx.doi.org/10.1016/0031-9163(65)91101-7CrossrefGoogle Scholar

  • [15] G.F. Zharkov and V.G. Zharkov: “Magnetic vortex in superconducting wire”, Physica Scripta, Vol. 57, (1998), pp. 664–667. http://dx.doi.org/10.1088/0031-8949/57/6/011CrossrefGoogle Scholar

  • [16] E.B. Bogomolnyi: “Stability of classical solutions”, Yad Phys., Vol. 24, (1976), pp. 861–870. Google Scholar

  • [17] A.T. Dorsey: I. Luk'yanchuk: “Theory of superconductors with \(\kappa \) close to 1sqrt1/2”, Phys. Rev. B, Vol. 63, (2001), pp. 174504–174517; Ann. Phys. (N. Y.), Vol. 233, (1993), pp. 243. http://dx.doi.org/10.1103/PhysRevB.63.174504Google Scholar

  • [18] A.M. Gulian and G.F. Zharkov: Nonequilibrium Electrons and Phonons in Superconductors, Kluwer/Plenum, New York, 1999. Google Scholar

  • [19] H.J. Fink and A.G. Presson: “Superheating, of the Meissner state and the giant vortex state of a cylinder of finite extent”, Phys. Rev., Vol. 168, (1968), pp. 399–402. http://dx.doi.org/10.1103/PhysRev.168.399CrossrefGoogle Scholar

  • [20] H.J. Fink, D.S. McLachlan and B. Rothberg-Bibby: “First and second order phase transitions in moderately small superconductors in a magnetic field”, In: Prog. in Low Temp. Phys.”, (Ed.): Vol. VIIb, D. F. Brewer North Holland, Amsterdam, 1978, pp. 435–516. Google Scholar

  • [21] G.F. Zharkov: “Paramagnetic Meissner effect in superconductors from self-consistent solution of GL-equations”, Phys. Rev. B, Vol. 63, (2001), pp. 214502–214509. http://dx.doi.org/10.1103/PhysRevB.63.214502CrossrefGoogle Scholar

  • [22] F.M., Peeters et. al: Superlatt. and Microstruct., Vol. 25, (1999), pp. 1195; “Hysteresis in mesoscopic superconducting disks”, Phys. Rev. B, Vol. 59 (1999), pp. 6039–6042; “Vortex structure of thin, mesoscopic disks with enhanced surface superconductivity”, ibid, Vol. 62, (2000), pp. 9663–9687; “Superconducting properties of mesoscopic cylinders with enhanced surface superconductivity”, ibid, Vol. 65, (2002), pp. 024510(10). http://dx.doi.org/10.1006/spmi.1999.0734CrossrefGoogle Scholar

  • [23] J.J. Palacios: “Vortex matter in, superconducting mesoscopic disks”, Phys. Rev. B, Vol. 58, (1998), pp. R5948-R5951; “Flux penetration and expulsion in thin superconducting disks”, Phys. Rev. Lett., Vol. 83, (1999), pp. 2409–2412; “Stability and paramagnetism in superconducting mesoscopic disks”, Phys. Rev. Lett., Vol. 84, (2000), pp. 1796–1880. http://dx.doi.org/10.1103/PhysRevB.58.R5948CrossrefGoogle Scholar

  • [24] V.V. Moshchalkov et al.: “Effect of sample topology on the critical fields of mesoscopic superconductors”, Nature, Vol. 373, (1995), pp. 319–322; “Symmetry-induced formation of antivortices in mesoscopic superconductors”, Nature, Vol. 408, (2000), pp. 833–835. http://dx.doi.org/10.1038/373319a0CrossrefGoogle Scholar

  • [25] A.K. Geim et. al.: “Phase transitions in individual sub-micrometer superconductors”. Nature, Vol. 390 (1997), pp. 259–262; “Paramagnetic Meissner effect in small superconductors”, Nature, Vol. 396, (1998), pp. 144–146; “Non-quantized penetration of magnetic field in the vortex state of superconductors”, Nature, Vol. 407, (2000), pp. 55–57; “Fine structure in magnetization of individual fluxoid states”, Phys. Rev. Lett., Vol. 85, (2000), pp 1528–1532. http://dx.doi.org/10.1038/36797CrossrefGoogle Scholar

  • [26] D.S. McLachlan: “Quantum oscillations and the order of the phase charge in a low \(\kappa \) type-II superconducting microcylinder”, Solid State Commun., Vol 8, (1970), pp. 1589–1593; “(II) Quantum oscillations, pinning and the superheating and other critical fields in a low \(\kappa \) type-II superconducting microcylinder”, ibid, pp. 1595–1599. http://dx.doi.org/10.1016/0038-1098(70)90470-9CrossrefGoogle Scholar

  • [27] O. Buisson, et al.: “Magnetization oscillations of a superconducting disk”, Phys. Lett. A., Vol. 150, (1990), pp. 36–42. http://dx.doi.org/10.1016/0375-9601(90)90056-TCrossrefGoogle Scholar

  • [28] F.B. Műller-Allinger, A.C. Motta “Paramagnetic reentrant effect in high puruty mesoscopic AgNb proximity structure”, Phys. Rev. Lett., Vol. 84, (2000), pp 3161–3164. http://dx.doi.org/10.1103/PhysRevLett.84.3161CrossrefGoogle Scholar

About the article

Published Online: 2004-03-01

Published in Print: 2004-03-01


Citation Information: Open Physics, Volume 2, Issue 1, Pages 220–240, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/BF02476282.

Export Citation

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gelii F. Zharkov
Uspekhi Fizicheskih Nauk, 2004, Volume 174, Number 9, Page 1012

Comments (0)

Please log in or register to comment.
Log in