Jump to ContentJump to Main Navigation
Show Summary Details

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2015: 0.948
5-year IMPACT FACTOR: 0.977

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142
Impact per Publication (IPP) 2015: 1.222

Open Access
Online
ISSN
2391-5471
See all formats and pricing
Volume 2, Issue 4 (Dec 2004)

Issues

Runaway of electrons in dense gases and mechanism of generation of high-power subnanosecond beams

Alexey Tkachev
  • General Physics Institute, Russian Academy of Science, Vaviova St. 38, 119991, Moscow, Russia
  • Email:
/ Sergei Yakovlenko
  • General Physics Institute, Russian Academy of Science, Vaviova St. 38, 119991, Moscow, Russia
  • Email:
Published Online: 2004-12-01 | DOI: https://doi.org/10.2478/BF02475565

Abstract

New understanding of mechanism of the runaway electrons beam generation in gases is presented. It is shown that the Townsend mechanism of the avalanche electron multiplication is valid even for the strong electric fields when the electron ionization friction on gas may be neglected. A non-local criterion for a runaway electron generation is proposed. This criterion results in the universal two-valued dependence of critical voltage U cr on pd for a certain gas (p is a pressure, d is an interelectrode distance). This dependence subdivides a plane (U cr, pd) onto the area of the efficient electron multiplication and the area where the electrons leave the gas gap without multiplication. On the basis of this dependence analogs of Paschen’s curves are constructed, which contain an additional new upper branch. This brunch demarcates the area of discharge and the area of e-beam.

The mechanism of the formation of the recently created atomospheric pressure subnanosecond e-beams is discussed. It is shown that the beam of the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the anode. In this case a basic pulse of the electron beam is formed according to the non-local criterion of the runaway electrons generation.

The role of the discharge gap preionization by the fast electrons, emitted from the plasma non-uniformities on the cathode, as well as a propagation of an electron multiplication wave from cathode to anode in a dense gas are considered.

Keywords: Runaway electrons; beam generation; Paschen’s curves

Keywords: 51.50.+v

  • [1] R.G. Giovanelli: “Electron Energies resulting from an Electric Field in a Highly Ionized Gas”, Philos. Mag., Vol. 40, (1949), pp. 206–214.

  • [2] H. Dreicer: “Electron and Ion Runaway in a Fully Ionized Gas. I, II.”, Phys. Rev., Vol. 115, (1959), pp. 238–249;Phys. Rev., Vol. 117, (1960), pp. 329–342. http://dx.doi.org/10.1103/PhysRev.115.238 [Crossref]

  • [3] R.M. Kurlsrud, Y.C. Sun, N.K. Winson and H.A. Fallon: “Runaway Electrons in a Plasma”, Phys. Rev. Lett. Vol 31, (1973)pp. 690–693. http://dx.doi.org/10.1103/PhysRevLett.31.690 [Crossref]

  • [4] A.V. Gurevich: “On the theory of runaway electrons”, Zh. Eksp. Teor. Fiz., Vol. 39, (1960), pp. 1296–1307;Sov. Phys. JETP, Vol. 12, (1960), pp. 904–912.

  • [5] V.S. Marchenko and S. I. Yakovlenko: “About influence of deviation of electron distributions from Maxwell distribution on a degree of ionization and accuracy of diagnostics of impurity in plasma with Joule hearting”, Fiz. Plazmy (Moscow), Vol. 5, (1979), pp. 590–599;Sov. J. Plasma Phys., Vol. 5, (1979), pp. 331–340.

  • [6] L.P. Babich, T.V. Loiko and V.A. Tsukerman: “High-voltage nanosecond discharge in dense gases at big overvoltage, developing in a mode of electron runaway”, Usp. Fiz. Nauk, Vol. 160(7), (1990), pp. 49–82;Sov. Phys. Usp., Vol. 33, (1990), pp. 521–560. [Crossref]

  • [7] Yu.D. Korolev and G.A. Mesyats: The Physics of Pulse Breakdown, Nauka, Moscow, 1991.

  • [8] Yu.P. Raizer: The Physics of Gas Discharge, 2nd Ed., Nauka, Moscow, 1992.

  • [9] P.A. Bokhan and A.R. Sorokin: “Opened discharge generating electron beam”, Zh. Tekh. Fiz., Vol. 55(1), (1985), pp. 88–95 (in Russian).

  • [10] G.V. Kolbychev, P.D. Kolbycheva and I.V. Ptashnik: “Glow discharge with runaway electrons at borderline voltage”, Zh. Tekh. Fiz., Vol. 66(2), (1996), pp. 59–64;Tech. Phys., Vol. 41, (1996), pp. 144–148.

  • [11] A.R. Sorokin: “Forming of electron beams in open discharge”, Pis’ma Zh. Tekh. Fiz., Vol. 26(24), (2000), pp. 89–94;Tech. Phys. Lett., Vol. 26, (2000), pp. 721–725.

  • [12] A.R. Sorokin: “Whether the open discharge is photoelectronic discharge”, Pis’ma Zh. Tekh. Fiz., Vol. 28(9), (2002), pp. 14–21;Tech. Phys. Lett. , Vol. 28, (2002), pp. 361–367.

  • [13] A.P. Bokhan and P.A. Bokhan: “The mechanism of the anomalous high efficiency of an electronic beam generation in the open discharge”, Pis’ma Zh. Tekh. Fiz., Vol. 28(11), (2002), pp. 21–27;Tech. Phys. Lett. , Vol. 28 (2002), pp. 454–459.

  • [14] A.P. Bokhan, P.A. Bokhan and D.E. Zakrevskii: “Efficient generation of electron beams in anomalous discharge with enhanced cathode photoemission,”, Pis’ma Zh. Tekh. Fiz., Vol. 29(20), (2003), pp. 81–87.

  • [15] V.I. Derzhiev, V.F. Tarasenko, S.I. Yakovlenko and A.M. Yancharina: “Penning plasma lasers on transitions in helium and a neon”, In: S.I. Yakovlenko (Ed.): Plasma Lasers of Visual and Near Ultraviolet Ranges. Nauka, Moscow, 1989, pp. 5–43.

  • [16] S.I. Yakovlenko: “Gas and plasma lasers”, In: V.E. Fortov (Ed.): An Encyclopedia of Low-Temperature Plasma, Nauka/Interperiodika, Moscow, 2000, pp. 262–291.

  • [17] A.N. Tkachev and S.I. Yakovlenko: “On the mechanisms of the runaway of electrons in a gas: The Upper Branch of the Independent Discharge Ignition Curve”, JETP Letters Vol. 77(5), (2003), pp. 221–225. http://dx.doi.org/10.1134/1.1574835 [Crossref]

  • [18] A.N. Tkachev and S.I. Yakovlenko: “The mechanism of a runaway of electrons in gas and criterion of independent discharge ignition”, Pis’ma Zh. Tekh. Fiz., Vol. 29(16) (2003), pp. 54–62.

  • [19] A.M. Boichenko, A.N. Tkachev and S.I. Yakovlenko: “The Townsend Coefficient and Runaway of Electrons in Electronegative Gas”, JETP Letters, Vol. 78(11), (2003), pp. 709–713. http://dx.doi.org/10.1134/1.1648292 [Crossref]

  • [20] A.N. Tkachev and S.I. Yakovlenko: “On the Mechanism of the Runaway of Electrons in a Gas: The Upper Branch of the Paschen Curve”, Central European Journal of Physics (CEJP), Vol. 2(1), (2004), pp. 132–146 (www.cesj.com/physics.html) http://dx.doi.org/10.2478/BF02476277 [Crossref]

  • [21] A.N. Tkachev and S.I. Yakovlenko: “The Townsend coefficient and characteristics of electron runaway in nitrogen”, Pis’ma Zh. Tekh. Fiz., Vol. 30(7), (2004), pp. 14–24.

  • [22] A.N. Tkachev and S.I. Yakovlenko: “On the mechanism of the runaway of electrons in a gas: the universal escape curves for He, Xe, N2”, Proc. SPIE, Vol. 5483, (2003), (in press)

  • [23] A.N. Tkachev and S.I. Yakovlenko: “Simulation of an Electron Avalanche in Helium”, Technical Physics, Vol. 49(3), (2004), pp. 371–377. http://dx.doi.org/10.1134/1.1688430 [Crossref]

  • [24] A.N. Tkachev and S.I. Yakovlenko: “The Townsend Coefficient and Runaway of Relativistic Electrons in helium”, Russian Physics—Lebedev Institute Reports, (2004) (in press).

  • [25] A.N. Tkachev, A.A. Fedenev and S.I. Yakovlenko: “The Townsend coefficient and escape curve for neon”, Russian Physics—Lebedev Institute Reports, Vol. 4, (2004) (in press).

  • [26] V.F. Tarasenko, S.I. Yakovlenko, V.M. Orlovskii, A.N. Tkachev and S.A. Shunailov: “Production of Powerful Electron Beams in Dence Gases”, JETP Letters, Vol. 77(11), (2003), pp. 611–615. http://dx.doi.org/10.1134/1.1600816 [Crossref]

  • [27] V.F. Tarasenko, S.I. Yakovlenko, V.M. Orlovskii and A.N. Tkachev: “About the mechanism of shaping of high-power electronic beams in dense gases”, Russian Physics—Lebedev Institute Reports, Vol. 4, (2003), pp. 8–18.

  • [28] S.B. Alekseev, V.M. Orlovskii and V.F. Tarasenko: “E-beam formed in gasfilled diode at atmospheric pressure of air and nitrogen”, Technical Physics Letters, Vol 29(10), (2003), pp. 30–35 (in Russian).

  • [29] S.B. Alekseev, V.M. Orlovskii, V.F. Tarasenko, A.N. Tkachev and S.I. Yakovlenko: “Electron Beam Formation in Helium at Elevated Pressure”, Technical Physics Letters, Vol. 29(8), (2003), pp. 679–682. http://dx.doi.org/10.1134/1.1606787 [Crossref]

  • [30] S.B. Alekseev, V.P. Gubanov, V.M. Orlovskii, A.S. Stepchenko and V.F. Tarasenko: “Measurements of e-beam parameters”, Instruments and Experimental Techniques, Vol. 46(4), (2003), pp. 505–509. http://dx.doi.org/10.1023/A:1025186100063 [Crossref]

  • [31] V.F. Tarasenko, V.M. Orlovskii and S.A. Shunailov: “Formation e-beam and volume discharge in air at atmospheric pressure”, Izvestiya VUZov. Fizika, Vol. 46(3), (2003), pp. 94–95. (in Russion)

  • [32] V.F. Tarasenko, S.I. Yakovlenko, V.M. Orlovskii, A.N. Tkachev: “The Effect of Applied Voltage on the Formation of a Subnanosecond Electron Beam in a Gas-Filled Diode”, Technical Physics Letters, Vol. 30(4), (2004), pp. 335–337. http://dx.doi.org/10.1134/1.1748617 [Crossref]

  • [33] I.D. Kostyrya, V.S. Skakun, V.F. Tarasenko, A.N. Tkachev and S.I. Yakovlenko: “Role of fast electrons in forming of volume pulse discharge at rather high pressures”, Technical Physics Letters, Vol. 30(10), (2004), pp. 31–38.

  • [34] A.N. Tkachev and S.I. Yakovlenko: “Cathode layer parameters in high-pressure Xe excilamp”, Proc. SPIE, Vol. 4747, (2002), pp. 271–278.

  • [35] A.N. Tkachev and S.I. Yakovlenko: “Simulation of the Plasma Creation in a Cathode Layer of the High-Efficiency Excilamp Discharge”, Laser Phys, Vol. 12(7), (2002), pp. 1022–1028.

  • [36] E. Krishnakumar and S.K. Srivastava: “Ionization cross sections of rare-gas atoms by electron impact”, J. Phys. B, Vol. 21(6), (1988), pp. 1055–1082. http://dx.doi.org/10.1088/0953-4075/21/6/014 [Crossref]

  • [37] D.V. Fursa and I. Bray: “Calculation of electron-helium scattering”, Phys. Rev. A, Vol. 52(2), (1995), pp. 1279–1297. http://dx.doi.org/10.1103/PhysRevA.52.1279 [Crossref]

  • [38] A.M. Eletsky and B.M. Smirnov: Physical processes in gases, Energoatomizdat, Moscow, 1985.

  • [39] J.C. Nickel, K. Imre, D.F. Register and S. Trajmar: “Total electron scattering cross sections: I. He, Ne, Ar, Xe”, J. Phys. B, Vol. 18(1), (1985), pp. 125–133. http://dx.doi.org/10.1088/0022-3700/18/1/015 [Crossref]

  • [40] D.F. Register and S. Trajmar: “Differential, integral and momentum-transfer cross sections for elastic electron scattering by neon: 5 to 100 eV”, Phy. Rev. A, Vol. 29(4), (1984), pp. 1785–1792. http://dx.doi.org/10.1103/PhysRevA.29.1785

  • [41] G.D. Meneses, R.E.H. Clark, J. Abdallah Jr. and G. Scanak: “Cross sections for the excitation of 3s 3p 3d 4p, and 4s manifolds in e-Ne collisions”, J. Phys. B, Vol. 35, (2002), pp. 3119–3136. http://dx.doi.org/10.1088/0953-4075/35/14/309

  • [42] F.A. Sharpton, R.M.St. John, C.C. Lin and F.E. Fajen: “Experimental and theoretical studies of electron-impact excitation of neon”, Phys. Rev. A, Vol. 2(4), (1970), pp. 1305–1322. http://dx.doi.org/10.1103/PhysRevA.2.1305 [Crossref]

  • [43] A.G. Engelhardt, A.V. Phelps and C.G. Risk: “Determination of Momentum Transfer and Inelastic Collision Cross Sections for Electrons in Nitrogen Using Transport Coefficients”, Phys. Rev. A, Vol. 135(6), (1964), pp. 1566–1574. http://dx.doi.org/10.1103/PhysRev.135.A1566 [Crossref]

  • [44] D.E. Golden: “Low-energy resonances in e−-N2 total scattering cross sections: the temporary formation of N 2−”, Phys. Rev. Lett., Vol. 17(16), (1966), pp. 847–848. http://dx.doi.org/10.1103/PhysRevLett.17.847 [Crossref]

  • [45] H.J. Blaauw, R.W. Wagenaar, D.H. Barends and F.J. de Heer: “Total cross sections for electron scattering from N2 and He”, J. Phys. B, Vol. 13, (1980), pp. 359–376. http://dx.doi.org/10.1088/0022-3700/13/2/023 [Crossref]

  • [46] G. Dalba, P. Fornasini, R. Grisenti, G. Ranieri and A. Zecca: “Absolute total cross section measuremenets for intermediate energy electron scattering. II. N2, O2 and NO”, J. Phys. B, Vol. 13, (1980), pp. 4695–4701. http://dx.doi.org/10.1088/0022-3700/13/23/025 [Crossref]

  • [47] E. Krishnakumar and S.K. Srivastava: “Cross sections for the production of N 2+, N++N 22+, and N2+ by electron impact on N2”, J. Phys. B, Vol. 23, (1990), pp. 1893–1903. http://dx.doi.org/10.1088/0953-4075/23/11/022 [Crossref]

  • [48] C. Tian and C.R. Vidal: “Electron impact ionization of N2 and O2: contributions from different dissociation channels of multiply ionized molecules”, J. Phys. B, Vol. 31, (1998), pp. 5369–5381. http://dx.doi.org/10.1088/0953-4075/31/24/018 [Crossref]

  • [49] D. Rapp, P. Englander-Golden and D.P. Briglia: “Cross sections for dissociative ionization of molecules by electron impact”, J. Chem. Phys., Vol. 42(12), (1995), pp. 4081–4085. http://dx.doi.org/10.1063/1.1695897 [Crossref]

  • [50] B.L. Schram, F.J. de Heer, M.J. van der Wiel and J. Kistemaker: “Ionization cross sections for electrons (0.6–20 keV) in noble and diatomic gases”, Physica, Vol. 31, (1965), pp. 94–112. http://dx.doi.org/10.1016/0031-8914(65)90109-6

  • [51] L. Campbell, M.J. Brunger, A.M. Nolan, L.J. Kelly, A.B. Wedding, J. Harrison, P.J.O. Teubner, D.C. Cartwright and B. McLaughlin: “Integral cross sections for electron impact excitation of electronic states of N2”, J. Phys. B, Vol. 34, (2001), pp. 1185–1199. http://dx.doi.org/10.1088/0953-4075/34/7/303 [Crossref]

  • [52] D.C. Cartwright, A. Chutjian, S. Trajmar and W. Williams: “Electron impact excitation of the electronic states of N2. II. Integral cross sections at incident energies from 10 to 50 eV”, Phys. Rev. A, Vol., 16(3), (1977), pp. 1041–1051. http://dx.doi.org/10.1103/PhysRevA.16.1041 [Crossref]

  • [53] G.J. Schulz: “Resonances in Electron Impact on Diatomic Molecules”, Rev. Mod. Phys., Vol. 45(3), (1973), pp. 423–486. http://dx.doi.org/10.1103/RevModPhys.45.423 [Crossref]

  • [54] M. Vicic, G. Poparic and D.S. Belic: “Large vibrational excitation of N2 by low-energy electrons”, J. Phys. B, Vol. 29, (1996), pp. 1273–1281. http://dx.doi.org/10.1088/0953-4075/29/6/023 [Crossref]

  • [55] V.I. Babanin and A.Ya. Ender: “Influence of electron-atomic collisions on electrons movemenet in gas-filled diode”, Zh. Tekh. Fiz., Vol. 44(1), (1974), pp. 102–113.

  • [56] T. Stanski and B. Adamczyk: “Measurement of dissociative ionization cross section of SF6 by using double collector cycloidal mass spectrometer”, J. Mass Spectrom. Ion Phys., Vol. 46(1), (1983), pp. 31–34. http://dx.doi.org/10.1016/0020-7381(83)80045-X

  • [57] J.P. Novak and M.F. Frechette: “Transport coefficients of SF6-N2 mixtures from revised data”, J. Appl. Phys., Vol. 55(1), (1984), pp. 107–119. http://dx.doi.org/10.1063/1.332874 [Crossref]

  • [58] L.E. Kline, D.K. Davies, C.L. Chen and P.J. Chantry: “Dielectric properties for SF6 and SF6 mixtures predicted from basic data”, J. Appl. Phys., Vol. 50(11), (1979), pp. 6789–6796. http://dx.doi.org/10.1063/1.325814

  • [59] A.L. Ward: “Calculation of Cathode-Fall Characteristics,”J. Appl. Phys., Vol. 33(9), (1962), pp. 2789–2794. http://dx.doi.org/10.1063/1.1702550 [Crossref]

  • [60] F.M. Penning: “Nieuwe metingen over de doorslagspanningen van edelgassen”, Physica, Vol. 12(4), (1932), pp. 65–81.

  • [61] A.N. Dikdji and B.N. Kl’anfeld: “Voltage of the discharge ignition in He, Ne, Ar, Kr and Xe at low pressures”, Pis’ma Zh. Tekh. Fiz., Vol. 28(6), (1955), pp. 1038–1044.

  • [62] L.G. Guseva and B.N. Kl’anfeld: “Voltage of the discharge ignition in mercury vapours”, Pis’ma Zh. Tekh. Fiz., Vol. 24(7), (1954), pp. 1169–1178.

  • [63] K.N. Ul’yanov and V.V. Chulkov: “A left branch of Paschen curve in helium”, Zh. Tekh. Fiz., Vol. 58(2), (1988), pp. 328–334.

  • [64] Yu.L. Stankevich and V.G. Kalinin: “Fast electrons and X-ray emission at initial stage of pulsed spark discharge in air”, Doklady Akademii Nauk SSSR, Vol. 177, (1967), pp. 72–75.

  • [65] R.C. Noggle, E.P. Krider and J.R. Wayland: “A Search for X Rays from Helium and Air Discharges at Atmospheric Pressure”, J. Appl. Phys., Vol. 39, (1968), pp. 4746–4748. http://dx.doi.org/10.1063/1.1655832 [Crossref]

  • [66] V.V. Batygin and I.N. Toptygin: Collection of tasks on electrodynamics, GIFML, Moscow, 1962.

  • [67] S.I. Yakovlenko: “The mechanism of streamer propagation to the anode and to the cathode”, Russian Physics—Lebedev Institute Reports, Vol. 10, (2004), p. 27–36.

  • [68] S.I. Yakovlenko: “The velocity of streamer propagation to the anode and to the cathode in He, Xe, N2 and F6”, Technical Physics Letters, Vol. 30(9), (2004), pp. 12–20. [Crossref]

  • [69] S.I. Yakovlenko: “The mechanism of streamer propagation to the anode and to the cathode caused by background multiplication”, The electronic journal “Investigated in Russia”, Vol. 9, (2004), pp. 86–100, http://zhurnal.ape.relarn.ru/articles/2004/009.pdf

  • [70] A.N. Tkachev and S.I. Yakovlenko: “Breakdown in a Cylindrical Gap of an Effective Excimer Lamp with a Small-Curvature-Radius Cathode”, Laser Physics, Vol. 13(11), (2003), pp. 1345–1356.

  • [71] S.B. Alekseev, V.M. Orlovskii and V.F. Tarasenko: “Atmospheric pressure CO2 laser with discharge initiated by e-beam formed in operating mixture”, Kvant. Electron., Vol. 33(12), (2003), pp. 1059–1061. http://dx.doi.org/10.1070/QE2003v033n12ABEH002553 [Crossref]

About the article

Published Online: 2004-12-01

Published in Print: 2004-12-01


Citation Information: Open Physics, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/BF02475565. Export Citation

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. M. Boichenko and A. N. Tkachev
Technical Physics, 2014, Volume 59, Number 9, Page 1334
[3]
Sharath Nagaraja, Vigor Yang, and Igor Adamovich
Journal of Physics D: Applied Physics, 2013, Volume 46, Number 15, Page 155205
[4]
A. M. Boichenko, V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, and A. N. Tkachev
Technical Physics, 2013, Volume 58, Number 3, Page 370
[5]
S. B. Alekseev, E. Kh. Baksht, A. M. Boichenko, I. D. Kostyrya, V. F. Tarasenko, and A. N. Tkachev
Technical Physics, 2012, Volume 57, Number 9, Page 1192
[6]
A. M. Boichenko, A. G. Burachenko, I. D. Kostyrya, V. F. Tarasenko, and A. N. Tkachev
Technical Physics, 2011, Volume 56, Number 8, Page 1202
[7]
A. M. Boichenko, A. A. Fedenev, A. N. Panchenko, and A. E. Tel’minov
Physics of Wave Phenomena, 2008, Volume 16, Number 4, Page 283
[8]
Viktor F. Tarasenko and Sergei I. Yakovlenko
Uspekhi Fizicheskih Nauk, 2006, Volume 176, Number 7, Page 793
[9]
V. F. Tarasenko and S. I. Yakovlenko
Physics of Wave Phenomena, 2008, Volume 16, Number 3, Page 207
[10]
D. V. Rybka, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko
Bulletin of the Lebedev Physics Institute, 2007, Volume 34, Number 9, Page 253
[11]
G. I. Aizenshtat, E. Kh. Baksht, I. D. Kostyrya, M. A. Lelekov, M. I. Lomaev, I. I. Nadreev, I. F. Nam, M. A. Rozhnev, D. V. Rybka, S. A. Ryabkov, V. F. Tarasenko, O. P. Tolbanov, A. V. Tyazhev, and L. G. Shapoval
Instruments and Experimental Techniques, 2007, Volume 50, Number 5, Page 695
[12]
E. Kh. Baksht, V. F. Tarasenko, M. I. Lomaev, D. V. Rybka, A. N. Tkachev, and S. I. Yakovlenko
Laser Physics, 2007, Volume 17, Number 9, Page 1124
[13]
[14]
A. N. Tkachev, A. A. Fedenev, and S. I. Yakovlenko
Laser Physics, 2007, Volume 17, Number 6, Page 775
[15]
Victor F Tarasenko and Sergei I Yakovlenko
Physica Scripta, 2005, Volume 72, Number 1, Page 41
[16]
S. I. Yakovlenko
Bulletin of the Lebedev Physics Institute, 2007, Volume 34, Number 2, Page 61
[17]
A. N. Tkachev and S. I. Yakovlenko
Technical Physics Letters, 2006, Volume 32, Number 7, Page 572
[18]
I. D. Kostyrya, V. M. Orlovskii, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko
Technical Physics Letters, 2005, Volume 31, Number 6, Page 457
[20]
A. N. Tkachev, A. A. Fedenev, and S. I. Yakovlenko
Technical Physics Letters, 2007, Volume 33, Number 1, Page 80
[21]
A. N. Tkachev and S. I. Yakovlenko
Technical Physics, 2006, Volume 51, Number 11, Page 1524
[22]
V. A. Gundienkov and S. I. Yakovlenko
Technical Physics, 2006, Volume 51, Number 9, Page 1237
[23]
A. N. Tkachev and S. I. Yakovlenko
Laser Physics, 2006, Volume 16, Number 9, Page 1308
[24]
V. F. Tarasenko, S. I. Yakovlenko, A. N. Tkachev, and I. D. Kostyrya
Laser Physics, 2006, Volume 16, Number 7, Page 1039
[25]
A. N. Tkachev and S. I. Yakovlenko
Technical Physics, 2006, Volume 51, Number 5, Page 574
[26]
S. I. Yakovlenko
Technical Physics Letters, 2006, Volume 32, Number 4, Page 330

Comments (0)

Please log in or register to comment.
Log in