Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2004

Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

  • Xi Yang EMAIL logo , Andrew Beckwith , John Miller and Lowell Wood
From the journal Open Physics

Abstract

The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

[1] G.A. Morton and E.G. Ramberg: “Point projector electromicroscope”, Phys. Rev., Vol. 56, (1939), p. 705. http://dx.doi.org/10.1103/PhysRev.56.70510.1103/PhysRev.56.705Search in Google Scholar

[2] E.W. Müller: “Field Ionization and Field Ion Microscopy”, Advances in Electronics and Electron Physics, Vol. 13, (1960), pp. 83–179. Search in Google Scholar

[3] H.-W. Fink, W. Stocker and H. Schmid: “Holography with low energy electrons”, Phys. Rev. Lett., Vol. 65, (1990), pp. 1204–1206. http://dx.doi.org/10.1103/PhysRevLett.65.120410.1103/PhysRevLett.65.1204Search in Google Scholar

[4] V.T. Binh and V. Semet: “Low energy—electron diffraction by nano—objects in projection microscopy without magnetic shielding”, Appl. Phys. Lett., Vol. 65, (1994), pp. 2493–2495. http://dx.doi.org/10.1063/1.11264810.1063/1.112648Search in Google Scholar

[5] Ch. Adessi, M. Devel, V.T. Binh, Ph. Lambin and V. Meunier: “Influence of structural defects on Fresnel projection microscope images of carbon nanotubes: Implications for the characterization of nanoscale devices”, Phys. Rev. B, Vol. 61, (2000), pp. 13385–13389. http://dx.doi.org/10.1103/PhysRevB.61.R1338510.1103/PhysRevB.61.R13385Search in Google Scholar

[6] D. Gabor: “A New Microscopic Principle”, Nature, Vol. 161, (1948), pp. 777–778. Search in Google Scholar

[7] E. Hecht and A. Zajac: Optics, 2nd Ed., Addison-Wesley, Menlo Park, California, 1975. 10.1063/1.3068822Search in Google Scholar

[8] A. Mayer: “Electronic diffraction tomography by Green’s functions and by singular value decompositions”, Phys. Rev. B, Vol. 63, (2001), pp. 035408–035413. http://dx.doi.org/10.1103/PhysRevB.63.03540810.1103/PhysRevB.63.035408Search in Google Scholar

[9] H.J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink andH. Schmid: “Theory of the Point Source Electron Microscope”, Ultramicroscopy, Vol. 45, (1992), pp. 381–403. http://dx.doi.org/10.1016/0304-3991(92)90150-I10.1016/0304-3991(92)90150-ISearch in Google Scholar

[10] J.B. Tiller, A. Barty, D. Paganin and K.A. Nugent: “The Holographic twin image problem: a Deterministic phase solution”, Optics Communications, Vol. 183, (2000), pp. 7–14. http://dx.doi.org/10.1016/S0030-4018(00)00852-X10.1016/S0030-4018(00)00852-XSearch in Google Scholar

[11] J.R. Broach, J.R. Pringle and E.W. Jones: The Molecular and Cellular Biology of the Yeast Saccharomyces, Cold Spring Harbor Laboratory Press, 1991. Search in Google Scholar

[12] C. Prodan and E. Prodan: “The dielectric behaviour of living cell suspensions”, J. Phys. D: Appl. Phys., Vol. 32, (1999), pp. 335–343. http://dx.doi.org/10.1088/0022-3727/32/3/02210.1088/0022-3727/32/3/022Search in Google Scholar

[13] H. Fröhlich: “Long Range Coherence and Energy Storage in Biological Systems”, Int. J. Quant. Chem., Vol. II, (1968), pp. 641–649. http://dx.doi.org/10.1002/qua.56002050510.1002/qua.560020505Search in Google Scholar

[14] H. Fröhlich: “Long Range Coherence and the Action of Enzymes”, Nature, Vol. 228, (1970), p. 1093. http://dx.doi.org/10.1038/2281093a010.1038/2281093a0Search in Google Scholar PubMed

[15] H. Fröhlich: “The extraordinary dielectric properties of biological materials and the action of enzymes”, Proc. Natl. Acad. Sci. USA, Vol. 72, (1975), pp. 4211–4215. http://dx.doi.org/10.1073/pnas.72.11.421110.1073/pnas.72.11.4211Search in Google Scholar PubMed PubMed Central

[16] H. Fröhlich: “Coherent excitations in active biological systems”, In: F. Guttman and H. Keyzer (Eds.): Modern Biochemistry, Plenum Press, New York, 1986. Search in Google Scholar

[17] N.E. Mavromatos andD.V. Nanopoulos: “Quantum Brain?”, Int. J. Mod. Phys. B12, (1998), pp. 517–542. http://dx.doi.org/10.1142/S021797929800032610.1142/S0217979298000326Search in Google Scholar

[18] B. Julsgaard, A. Kozhekin andE.S. Polzik: “Experimental long—lived entanglement of two macroscopic objects”, Nature, Vol. 413, (2001), pp. 400–403. http://dx.doi.org/10.1038/3509652410.1038/35096524Search in Google Scholar PubMed

[19] E. Altewischer, M.P. van Exter andJ.P. Woerdman: “Plasmon—assisted transmission of entangled photons”, Nature, Vol. 418, (2002), pp. 304–306. http://dx.doi.org/10.1038/nature0086910.1038/nature00869Search in Google Scholar PubMed

[20] W. Barnes: “Survival of the entanglement”, Nature, Vol. 418, (2002), pp. 281–282. http://dx.doi.org/10.1038/418281a10.1038/418281aSearch in Google Scholar PubMed

Published Online: 2004-12-1
Published in Print: 2004-12-1

© 2004 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/BF02475566/html
Scroll to top button