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Abstract: Self-gravitating systems are generally thought to behavior non-extensively

due to the long-range nature of gravitational forces. We discuss a relation between

the nonextensive parameter q of Tsallis statistics, the temperature gradient and the

gravitational potential based on the equation of hydrostatic equilibrium for self-gravitating

systems. It is suggested that the nonextensive parameter in Tsallis statistics has a clear

physical meaning with regard to the non-isothermal nature of the systems with long-range

interactions. Tsallis’ equilibrium distribution for the self-gravitating systems describes the

property of hydrostatic equilibrium of the systems.
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The hydrostatic equilibrium is one of the fundamental properties (or one of the basic

assumptions) of self-gravitating systems. It has been long understood that the self-

gravitating systems at a stable state satisfy the equation of hydrostatic equilibrium, the

general form of which can be written as

∇P = −mn∇ϕ(r) (1)

where P is the pressure, m is the mass of particle, n is the number density of particles,

and ϕ is the gravitational potential determined by Poisson equation,

∇2ϕ(r) = 4πGmn (2)

where G is the gravitational constant. In the framework of Boltzmann-Gibbs (B-G) sta-

tistical mechanics, the structure and stability of self-gravitating systems at statistical
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equilibrium are usually analyzed in terms of the maximization of a thermodynamic po-

tential [1]. This thermodynamic approach leads to isothermal configurations that have

been studied for a long time in the context of stellar structure and galactic structure with

equation of state of ideal gas taken in the form of P = nkT and Maxwell-Boltzmann

(M-B) equilibrium distribution expressed by

f(r,v) =
(

m

2πkT

)
3

2

n(r) exp

(

−
mv2

2kT

)

(3)

where temperature T is constant. The number density of particles is given by

n(r) = n0 exp
[

−
m

kT
(ϕ − ϕ0)

]

(4)

where n0 and ϕ0 are, respectively, the number density and the gravitational potential at

r = 0. Additionally, Eq.(3) and Eq.(4) can be obtained by following the standard line of

using Boltzmann equation and H theorem [2], which leads to the result known to all that

the temperature gradient is zero and therefore the system is a thermal equilibrium state.

The density distribution Eq.(4) can also be determined more directly by combining the

equation of hydrostatic equilibrium, Eq.(1), with the equation of state of an ideal gas.

Self-gravitating systems have been generally thought to behavior non-extensively due

to the long-range nature of gravitational forces. However, almost all the systems treated

in statistical mechanics with B-G statistics have usually been extensive; this property

holds for systems with short-range interparticle forces. When dealing with systems with

long-rang interparticle forces such as Newtonian gravitational forces and Coulomb electric

forces, where nonextensivity holds, B-G statistics may need to be generalized for the

statistical description of such systems. The nonextensive generalization of B-G statistical

mechanics known as“Tsallis statistics”has been the focus of significant attention in recent

years [3]. Such a generalization was done by constructing a new form of entropy, Sq, with

the nonextensive parameter q different from unity [4] in the form

Sq =
k

1 − q

(

∑

i

pq
i − 1

)

(5)

where k is Boltzmann constant, pi is probability that the system under consideration

is in its ith configuration such that
∑

i pi = 1, and q is a positive parameter whose

deviation from unity is considered for describing the degree of nonextensivity of the

system. The Boltzmann entropy SB is recovered from Sq only if q = 1. In this way,

Tsallis statistics gives for all q 6= 1 a power law distribution, while the B-G exponential

distribution is obtained only for q = 1. This new theory has provided a convenient

frame for the thermo-statistical analyses of many astrophysical systems and processes

[5], such as Jeans criterion for self-gravitating systems [6-8], stellar polytropes [9-11],

galaxy clusters [12], the nonequilibrium dynamical evolution of stellar systems [13,14],

dark matter distribution [15], the negative specific heat [16,17], the solar neutrino problem

[18,19], etc.
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Recently, M-B equilibrium distribution has been generalized in the framework of Tsal-

lis’ statistics [20]. Tsallis’ equilibrium distribution (or the generalized M-B distribution)

for the self-gravitating systems is also analyzed [21], which leads to a power law expression

fq(r,v) = n(r)Bq

(

m

2π kT (r)

)
3

2

[

1 − (1 − q)
mv2

2kT (r)

]
1

1−q

(6)

whereBq is a q -dependent normalization constant and the density distribution is tempe-

rature-dependent,

n(r) = n0

(

T (r)

T0

)
3

2

exp

[

−
m

k

(

∫

∇ϕ(r)

T (r)
· dr −

ϕ0

T0

)]

(7)

where T0 is temperature at r = 0. The nonextensive parameter q for the systems is

derived with relation to the gravitational potential and the temperature gradient by the

following equation [21]

k∇T + (1 − q)m∇ϕ = 0 (8)

Therefore, it presents a physical meaning of q with regard to the nature of non-isothermal

configurations of self-gravitating systems. The nonextensive parameter q is not one if and

only if the temperature gradient is not zero. M-B equilibrium distribution is recovered

from Eq.(6) perfectly when we let q = 1.

In the framework of Tsallis’ statistics, the equation of state of an ideal gas having

been used for long time in astrophysics is modified due to the nonextensive effect of

long-range interactions of gravitational forces [7, 8]. We now consider the equation of

hydrostatic equilibrium for self-gravitating systems in Tsallis’ statistics. We first discuss

the nonextensive equation of state of the system. In Tsallis’ equilibrium distribution

Eq.(6), there is a thermal cutoff on the maximum value allowed for the velocity of a

particle for q < 1, vmax =
√

2kT/m(1 − q), whereas there is no thermal cutoff for q > 1,

vmax → ∞. The mean value of square velocity < v2 > is expressed by the integral

< v2 > =

vmax
∫

0

v2fq(r,v) d 3v (9)

Substituting Eq.(6) into Eq.(9), we can evaluate this mean value for q < 1 by making

the change of variables, u = [(1 − q)m/2kT ]1/2v. This allows for

< v2 > =
[

(1 − q)
m

2kT

]

−1
1
∫

0

u4
(

1 − u2
)

1

1−q du

/ 1
∫

0

u2
(

1 − u2
)

1

1−q du

=
6kT

m(7 − 5q)
(10)

Obviously, the standard mean value of square velocity, 3kT/m, in B-G statistics is

recovered from Eq.(10) if we take q = 1. It is easy to prove that the result in Eq.(10) still
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holds true for 1 ≤ q < 7/5. But for q ≥ 7/5, the mean value of v2 diverges. Thus, the

nonextensive equation of state of the self-gravitating system is obtained as

P =
1

3
mn < v2 >=

2

7 − 5q
nkT, 0 < q <

7

5
. (11)

The standard form of the equation of state of an ideal gas is recovered by taking

q = 1. Using this new equation of state instead of that one of ideal gas, we can write the

equation of hydrostatic equilibrium, Eq.(1), as

2

7 − 5q
k (n∇T + T∇n) = −mn∇ϕ (12)

where the density gradient ∇n can be determined from Eq.(7), which is expressed with

the gravitational potential and the temperature gradient by the equation

∇n

n
=

3∇T

2T
−

m∇ϕ

kT
(13)

Substituting Eq.(13) into Eq.(12), we can obtain the relation between the nonextensive

parameter q, the gravitational potential, and the temperature gradient,

k∇T + (1 − q)m∇ϕ = 0 (14)

It is clear that this relation is the same as that in Eq.(8), which was determined quite

generally by the generalized Boltzmann equation, q-H theorem and Tsallis’ equilibrium

distribution [21,22]. Thus, again Eq.(8) can be obtained from the equation of hydrostatic

equilibrium for self-gravitating systems. This excellent agreement between the results

obtained in two different ways suggests that Tsallis’ equilibrium distribution for self-

gravitating systems describes the property of hydrostatic equilibrium of the systems.

Usually, Tsallis statistics for q 6= 1 can be used to describe the systems with long-

range interactions, but the reasons for this are unclear. In other words, we do not know

whether the parameter q 6= 1 must be related to a long-range potential. In our present

work, Eq.(8) or Eq.(14) establish a close relation between the parameter q 6= 1, the

gravitational potential ϕ and the temperature gradient. But, from the mathematical point

of view alone, it is not necessary for ϕ to be a long-range potential and it can be any one.

Actually, from the physical point of view, that fact that the nonextensive parameter q 6= 1

is related to the long-range nature of gravitational forces in the self-gravitating system

can be understood reasonably by Eq.(14). If the potential ϕ is short-range interactions,

then each element in the system is free from the boundary of the system. Such a system

is the physical “large” one. The physical “large” system always limits thermal equilibrium

because each particle of the system is free, the temperature gradient is zero and q is unity.

But, if the potential ϕ is long-range interactions, each element in the system is feeling the

boundary of the system and then the system is the physical ”small” one. The physical

“small” system cannot reach to thermal equilibrium automatically because each particle

in the system is not free and it is always under control of the long-range potential. So,

the temperature gradient cannot be zero and q is not unity. This may be the reason why



380 J. Du / Central European Journal of Physics 3(3) 2005 376–381

the self-gravitating system is always at the non-isothermal state if the convective mixing

is not taking place.

In summary, the nonextensive parameter in Tsallis statistics has a clear physical mean-

ing with regard to the non-isothermal nature of the systems with long-range interactions.

Tsallis’ equilibrium distribution for self-gravitating systems describes the fundamental

property of hydrostatic equilibrium of the systems.

Acknowledgment

I would like to thank S. Abe, C. Tsallis, P. Quarati, H.J. Haubold and A.Q. Wang

for helpful discussions during the twelfth UN/ESA workshop on Basic Space Science at

Beijing. This work is supported by the project of “985” Program of TJU of China.

References

[1] S. Chandrasekhar: An introduction to the theory of stellar structure, Dover, New
York, 1942; J. Binney and S. Tremaine: Galactic dynamics, Princeton University
Press, Princeton, 1987.

[2] S. Chapman and T.G. Cowling: The Mathematical Theory of Nonuniform Gases, 3rd
ed., Cambridge University Press, 1970; Wang Zhuxi: An Introduction to Statistical
Physics, The People’s Education Press, Beijing, 1965.

[3] S. Abe and A.K. Rajagopal: “Revisiting disorder and Tsallis statistics”, Science, Vol.
300, (2003), pp. 249–250; A. Plastino: “Revisiting disorder and Tsallis statistics”,
Science, Vol.300, (2003), pp. 250–250; V. Latora, A. Rapisarda and A. Robledo:
“Revisiting disorder and Tsallis statistics”, Science, Vol. 300, (2003), pp. 250–251.

[4] C. Tsallis: “Possible generalization of Boltzmann-Gibbs statistics”, J. Stat. Phys.,
Vol. 52, (1988), pp. 479–487.

[5] C. Tsallis and D. Prato: “Nonextensive statistical mechanics: Some links with astron-
omical phenomena”, In: H.J. Haubold (Ed.): Proceedings of the Xith United Nationa
/ European Space Agency Workshop on Basic Space Sciences; Cordoba, 9-13 Sept.
2002, Office for Outer Space affairs/United Nations, Kluwer Academic Publishers,
Dordrecht, 2003.

[6] J.A.S. Lima, R. Silva and J. Santos: “Jeans’ gravitational instability and nonextensive
kinetic theory”, Astron. Astrophys., Vol. 396, (2002), pp. 309–313.

[7] J.L. Du: “Jeans criterion and nonextensive velocity distribution function in kinetic
theory”, Phys. Lett. A, Vol. 320, (2004), pp. 347–351.

[8] J.L. Du: “Jeans criterion in nonextensive statistical mechanics”, Physica A, Vol. 335,
(2004), pp. 107–114.

[9] A. Taruya and M. Sakagami: “Gravothermal catastrophe and Tsallis’ generalized
entropy of self-gravitating systems”, Physica A, Vol. 307, (2002), pp. 185–206; M.
Sakagami and A. Taruya: “Description of quasi-equilibrium states of self- gravitating
systems based on nonextensive thermostatistics”, Physica A, Vol. 340, (2004), pp.
444–452.

[10] A. Plastino and A.R. Plastino: “Stellar polytropes and Tsallis’ entropy”, Phys. Lett.
A, Vol. 174, (1993), pp. 384–386.



J. Du / Central European Journal of Physics 3(3) 2005 376–381 381

[11] R. Silva and J.S. Alcaniz: “Nonextensive statistics and the stellar polytrope index”,
Physica A, Vol. 341, (2004), pp. 208–211.

[12] C.A. Wuensche, A.L.B. Ribeiro, F.M. Ramos and R.R. Rosa: “Nonextensivity and
galaxy clustering in the universe”, Physica A, Vol. 334, (2004), pp. 743–749.

[13] A. Taruya and M. Sakagami:“Long-term evolution of stellar self-gravitating systems
away from thermal equilibrium: connection with nonextensive statistics”, Phys. Rev.
Lett., Vol. 90, (2003), pp. 181101.

[14] A. Taruya and M. Sakagami: “Fokker-Planck study of stellsr self-gravitating system
away from the thermal equilibrium: connection with nonextensive statistics”, Physica
A, Vol. 340, (2004), pp. 453–458.

[15] S.H. Hansen, D. Egli, L. Hollenstein and C. Salzmann: “Dark matter distribution
function from nonextensive statistical mechanics”, astro-ph/0407111.

[16] S. Abe:“Thermodynamic limit of a classical gas in nonextensive statistical mechanics:
negative specific heat and polytropism”, Phys. Lett. A, Vol. 263, (1999), pp. 424–429.

[17] R. Silva and J.S. Alcaniz: “Negative heat capacity and nonextensive kinetic theory”,
Phys. Lett. A, Vol. 313, (2003), pp. 393–396.

[18] G. Kaniadakis, A. Lavagno and P. Quarati: “Generalized statistics and solar
neutrinos”, Phys. Lett. B, Vol. 369, (1996), pp. 308–312; A. Lavagno and P.
Quarati: “Classical and quantum nonextensive statistics effects in nuclear many-body
problems”, Chaos, Solitons and Fractals, Vol. 13, (2002), pp. 569–580.

[19] M. Coraddu, M. Lissia, G. Mezzorani and P. Quarati: “Super-Kamiokande hep
neutrino best fit: a possible signal of non-Maxwellian solar plasma”, Physica A, Vol.
326, (2003), pp. 473–481.

[20] J.A.S. Lima, R. Silva and A.R. Plastino: “Nonextensive thermostatistics and the H
theorem”, Phys. Rev. Lett., Vol. 86, (2001), pp. 2938–2941.

[21] J.L. Du: “The nonextensive parameter and Tsallis distribution for self-gravitating
systems”, Europhys. Lett., Vol.67, (2004), pp. 893–899.

[22] J.L. Du: “Nonextensivity in nonequilibrium plasma systems with Coulombian long-
range interactions”, Phys. Lett. A, Vol. 329, (2004), pp. 262–267.


