Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 1, 2006

Translation-rotation coupling and heat transfer in orientationally-disordered phase of CCl4

  • Oleg Pursky EMAIL logo and Vyacheslav Konstantinov
From the journal Open Physics

Abstract

The isochoric thermal conductivity of an orientationally-disordered phase of CCl4 is analysed within a model in which heat is transferred by phonons and above the phonon mobility edge by ”diffusive” modes migrating randomly from site to site. The mobility edge ω0 is found from the condition that the phonon mean-free path cannot become smaller than half the phonon wavelength. The contributions of phonon-phonon, one-, and two-phonon scattering to the total thermal resistance of solid CCl4 are calcualted under the assumption that the different scattering mechanisms contribute additively. An increase in the isochoric thermal conductivity with temperature is explained by suppression of phonon scattering at rotational excitations due to a decrease in correlation in the rotation of neighbouring molecules.

Keywords: 66.70+f; 63.20.Ls

[1] R. Berman: Thermal Conduction in Solids, Clarendon Press, Oxford, 1976. Search in Google Scholar

[2] F. Clayton and D. Batchelder: “Temperature and volume dependence of the thermal conductivity of solid argon”, J. Phys. Chem., Vol. 6, (1973), pp. 1213–1228. Search in Google Scholar

[3] I.N. Krupskii and V.G. Manzhelii: “Multiphonon interaction and the thermal conductivity of crystal argon, krypton and xenon”, Sov. J. JETP, Vol. 28, (1968), pp. 1090–1097. Search in Google Scholar

[4] V.A. Konstantinov: “Heat transfer by low-frequency phonons and “diffusive” modes in molecular crystals”, Low Temp. Phys., Vol. 29, (2003) pp. 422–451. http://dx.doi.org/10.1063/1.154250610.1063/1.1542506Search in Google Scholar

[5] O.I. Pursky, N.N. Zholonko and V.A. Konstantinov: “Influence of rotational motion of molecules on the thermal conductivity of solid SF6, CHCl3, C6H6, and CCl4”, Low Temp. Phys., Vol. 29, (2003), pp. 771–776. http://dx.doi.org/10.1063/1.161418910.1063/1.1614189Search in Google Scholar

[6] R. Rudman: “Carbon tetrachloride: A A new crystalline modification”, Science, Vol. 154, (1966) pp. 45–46. Search in Google Scholar

[7] R. Powers and R. Rudman: “Polymorphism of the crystalline methylchlormethane compounds. The structure of the ordered phases of the carbon tetrahalides”, J. Chem. Phys., Vol. 72, (1980) pp. 1629–1634. http://dx.doi.org/10.1063/1.43936210.1063/1.439362Search in Google Scholar

[8] Y.N. Sherwood (Eds.): The plastically crystalline state (Orientationally — disordered crystals), John Wiley&Sons, Chichester-New York-Brisbane-Toronto, 1979. Search in Google Scholar

[9] D.E. O’Reilly, E.M. Peterson and C.R. Scheie: “Molecular rotation in liquid and solid carbon tetrachloride”, J. Chem. Phys., Vol. 60, (1974), pp. 1603–1606. http://dx.doi.org/10.1063/1.168123710.1063/1.1681237Search in Google Scholar

[10] F.J. Bartoli and T.A. Litovitz: “Orientational motions in liquids”, J. Chem. Phys., Vol. 56, (1972), pp. 413–425. http://dx.doi.org/10.1063/1.167688310.1063/1.1676883Search in Google Scholar

[11] M. Djaburov et al.: “Liquid and plastic crystals phases”, J. Chem. Phys., Vol. 66, (1977), pp. 5748–5757. http://dx.doi.org/10.1063/1.43385010.1063/1.433850Search in Google Scholar

[12] J. Zuk, H. Kiefte and M.J. Clouter: “Elastic constants of the orientationally disordered phase Ib of CCl4”, J. Chem. Phys., Vol. 95, (1991) pp. 1950–1953. http://dx.doi.org/10.1063/1.46099110.1063/1.460991Search in Google Scholar

[13] R.G. Ross and P. Andersson: “Thermal conductivity and phase diagram of CCl4 under pressure”, Mol. Phys., Vol. 36, (1978) pp. 39–47. http://dx.doi.org/10.1080/0026897780010138110.1080/00268977800101381Search in Google Scholar

[14] V.A. Konstantinov, V.G. Manzhelii and S.A. Smirnov: “Isochoric thermal conductivity and thermal pressure of solid CCl4”, Phys. St. Sol. B, Vol. 163, (1991), pp. 368–374. Search in Google Scholar

[15] R.M. Lynden-Bell and K.H. Michel: “Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals”, Rev. Mod. Phys., Vol. 66, (1994), pp. 721–762. http://dx.doi.org/10.1103/RevModPhys.66.72110.1103/RevModPhys.66.721Search in Google Scholar

[16] W.J. Briels, A.P.J. Jansen and A. van der Avoird: “Translational-rotational coupling in strongly anharmonic molecular crystals with orientational disorder”, J. Chim. Phys. Phys. Chim. Biologique, Vol. 82, (1985), pp. 125–136. Search in Google Scholar

[17] A.B. Zahlan (Ed.): Exitons, magnons and phonons in molecular crystals, University Press, Cambridge, 1968. Search in Google Scholar

[18] V.G. Manzhelii and Yu.A. Freiman (Eds.): Physics of Cryocrystals, AIP Press, Woodbury, New York, 1997. Search in Google Scholar

[19] S.H. Walmsley: “Theory of phonon-phonon interactions in molecular crystals”, J. Chim. Phys. Phys. Chim. Biologique, Vol. 82, (1985), pp. 117–124. Search in Google Scholar

[20] C. Deusch and A. Huller: “Phonon damping by translation-rotation coupling in orientationally disordered molecular crystals”, Z. Phys. B.-Condensed Matter, Vol. 86, (1992), pp. 411–418. http://dx.doi.org/10.1007/BF0132373510.1007/BF01323735Search in Google Scholar

[21] V.G. Manzhelii et. al.: “Phonon-libron coupling and thermal conductivity of the simplest molecular crystals”, Sov. J. Low Temp. Phys., Vol. 1, (1975), pp. 624–672. Search in Google Scholar

[22] I.N. Krupskii, L.A. Koloskova and V.G. Manzhelii: “Thermal conductivity of deuteromethane”, J. Low Temp. Phys., Vol. 14, (1974), pp. 403–410. http://dx.doi.org/10.1007/BF0065534410.1007/BF00655344Search in Google Scholar

[23] H. Yasuda: “Thermal conductivity of solid CH4 and CD4”, J. Low. Temp. Phys., Vol. 31, (1978), pp. 223–256. http://dx.doi.org/10.1007/BF0011623810.1007/BF00116238Search in Google Scholar

[24] W. Bauernfeind, J. Keller and U. Schroder: “Theory of thermal conductivity in molecular crystals, application to alcali cyanides”, J. Physique, Vol. 42, (1981), pp. 247–249. http://dx.doi.org/10.1051/jphys:0198100420202470010.1051/jphys:01981004202024700Search in Google Scholar

[25] K. Kawasaki: “On the behavior of the thermal conductivity near the magnetic transition point”, Progr. Theor. Phys., Vol. 29, (1963), pp. 801–816. http://dx.doi.org/10.1143/PTP.29.80110.1143/PTP.29.801Search in Google Scholar

[26] T. Yamamoto, Y. Kataoka and K. Okada: “Theory of phase transitions in solid methane. Centering around phase II in solid methane”, J. Chem. Phys., Vol. 11, (1978), pp. 2701–2730. Search in Google Scholar

[27] M.C. Roufosse and P.G. Klemens: “Lattice thermal conductivity of minerals at high temperatures”, J. Geophys. Res., Vol. 79, (1974), pp. 703–705. http://dx.doi.org/10.1029/JB079i005p0070310.1029/JB079i005p00703Search in Google Scholar

[28] D.G. Cahill, S.K. Watson and R.O. Pohl: “Lower limit to thermal conductivity of disordered crystals”, Phys. Rev. B, Vol. 46, (1992), pp. 6131–6140. http://dx.doi.org/10.1103/PhysRevB.46.613110.1103/PhysRevB.46.6131Search in Google Scholar

[29] A.J.H. McGaughey and M. Kaviany: “Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon”, Int. J. Heat Mass Transfer, Vol. 47, (2004), pp. 1783–1798. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.00210.1016/j.ijheatmasstransfer.2003.11.002Search in Google Scholar

[30] A.J.H. McGaughey and M. Kaviany: “Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part II. Complex silica structures”, Int. J. Heat Mass Transfer, Vol. 47, (2004), pp. 1799–1816. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.00910.1016/j.ijheatmasstransfer.2003.11.009Search in Google Scholar

[31] O.I. Pursky and N.N. Zholonko: “Heat transfer in high-temperature phase of solid SF6”, Phys. Sol. St., Vol. 46, (2004), pp. 2015–2020. http://dx.doi.org/10.1134/1.182554210.1134/1.1825542Search in Google Scholar

[32] V.M. Kozhin: “Value of dencity shocks at phase transitions in carbon tetrachloride”, Kristallografia, Vol. 14, (1969), pp. 732–734 (in Russian). Search in Google Scholar

[33] A.P. Isakina and A.I. Prokhavatilov: “Structure and thermodynamic properties of SF6”, Low Temp. Phys., Vol. 19, (1993), pp. 142–147. Search in Google Scholar

[34] J.A. Morrison and E.L. Richards: “Thermodynamic study of phase transition in carbon tetrachloride”, J. Chem. Thermodyn., Vol. 8, (1976), pp. 505–510. http://dx.doi.org/10.1016/0021-9614(76)90022-710.1016/0021-9614(76)90022-7Search in Google Scholar

[35] F. Barocchi and R. Vallauri: “Evidence of multipole vibrational-translational relaxation in CCl4”, J. Chem. Phys., Vol. 51, (1969), pp. 10–14. http://dx.doi.org/10.1063/1.167169110.1063/1.1671691Search in Google Scholar

Published Online: 2006-6-1
Published in Print: 2006-6-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-006-0007-0/html
Scroll to top button