Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2017: 0.83

SCImago Journal Rank (SJR) 2017: 0.241
Source Normalized Impact per Paper (SNIP) 2017: 0.537

ICV 2017: 162.45

Open Access
See all formats and pricing
More options …
Volume 4, Issue 4


Volume 13 (2015)

Towards relativistic ECP / DFT description of chemical bonding in E112 compounds: spin-orbit and correlation effects in E112X versus HgX (X=H, Au)

Andréi Zaitsevskii / Elena Rykova / Nikolai Mosyagin / Anatoly Titov
Published Online: 2006-12-01 | DOI: https://doi.org/10.2478/s11534-006-0029-7


The relativistic effective core potential (RECP) approach combined with the spin-orbit DFT electron correlation treatment was applied to the study of the bonding of eka-mercury (E112) and mercury with hydrogen and gold atoms. Highly accurate small-core shape-consistent RECPs derived from Hartree-Fock-Dirac-Breit atomic calculations with Fermi nuclear model were employed. The accuracy of the DFT correlation treatment was checked by comparing the results in the scalar-relativistic (spin-orbit-free) limit with those of high level scalar-relativistic correlation calculations within the same RECP model. E112H was predicted to be slightly more stable than its lighter homologue (HgH). The E112-Au bond energy is expected to be ca. 25–30 % weaker than that of Hg-Au. The role of correlations and magnetic (spin-dependent) interactions in E112-X and Hg-X (X=H, Au) bonding is discussed. The present computational procedure can be readily applied to much larger systems and seems to be a promising tool for simulating E112 adsorption on metal surfaces.

Keywords: Superheavy elements; relativistic electronic structure calculations; effective core potentials

Keywords: 31.10.+z; 31.15.Ar; 31.15.Ew; 31.25.Nj; 33.15.-e; 31.30.Jv; 33.15.Fm

  • [1] W.-J. Liu, G.-Y. Hong, D.-D. Dai, L.-M. Li and M. Dolg: “The Beijing four-component density functional program package (BDF) and its applications to EuO, EuS, YbO and YbS”, Theor. Chim. Acta, Vol. 96, (1997), pp. 75–83. Google Scholar

  • [2] S. Varga, B. Fricke, H. Nakamatsu, T. Mukoyama, J. Anton, D. Geschke, A. Heitmann, E. Engel and T. Baştuğ: “Four-component relativistic density functional calculations of heavy diatomic molecules”, J. Chem. Phys., Vol. 112, (2000), pp. 3499–3506. http://dx.doi.org/10.1063/1.480934CrossrefGoogle Scholar

  • [3] J. Anton, B. Fricke and P. Schwerdtfeger: “Non-collinear and collinear four-component relativistic molecular density functional calculations”, Chem. Phys., Vol. 311, (2005), pp. 97–103. http://dx.doi.org/10.1016/j.chemphys.2004.10.012CrossrefGoogle Scholar

  • [4] V. Pershina: “Theoretical predictions of properties and chemical behavior of superheavy elements”, J. Nucl. Radiochem. Sciences, Vol. 3, (2002), pp. 137–141. Google Scholar

  • [5] V. Pershina, T. Bastug, C. Sarpe-Tudoran, J. Anton and B. Fricke: “Predictions of adsorption behaviour of the superheavy element 112”, Nucl. Phys. A, Vol. 734, (2004), pp. 200–203. http://dx.doi.org/10.1016/j.nuclphysa.2004.01.034CrossrefGoogle Scholar

  • [6] C. Sarpe-Tudoran, V. Pershina, B. Fricke, J. Anton, W.-D. Sepp and T. Jacob: “Adsorption of super-heavy elements on metal surfaces”, Eur. Phys. J. D, Vol. 24, (2003), pp. 65–67. http://dx.doi.org/10.1140/epjd/e2003-00170-1CrossrefGoogle Scholar

  • [7] T. Straatsma, E. Apra, T. Windus, M. Dupuis, E. Bylaska, W. de Jong, S. Hirata, D. Smith, M. Hackler, L. Pollack, R. Harrison, J. Nieplocha, V. Tipparaju, M. Krishnan, E. Brown, G. Cisneros, G. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. Nichols, K. Tsemekhman, M. Valiev, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang: NWCHEM, a Computational Chemistry Package for Parallel Computers, Version 4.5, 2003. Google Scholar

  • [8] Y.J. Choi and Y.S. Lee: “Spin-orbit density functional theory calculations for heavy metal monohydrides”, J. Chem. Phys., Vol. 119, (2003), pp. 2014–2019. http://dx.doi.org/10.1063/1.1584659CrossrefGoogle Scholar

  • [9] V. Vallet, L. Maron, C. Teichteil and J.-P. Flament: “A two-step uncontracted determinantal effective Hamiltonian-based SO-CI method”, J. Chem. Phys., Vol. 113, (2000), pp. 1391–1402. http://dx.doi.org/10.1063/1.481929CrossrefGoogle Scholar

  • [10] A. Zaitsevskii, R. Ferber and C. Teichteil: “Quasirelativistic transition property calculations by the intermediate Hamiltonian method: Electronic transition dipole moments and radiative lifetimes in Te2”, Phys. Rev. A, Vol. 63, (2001), art. 042511. Google Scholar

  • [11] S. Yabushita, Z.-Y. Zhang and R.M. Pitzer: “Spin-orbit configuration interaction using the graphical unitary group approach and relativistic core potential and spin-orbit operators”, J. Phys. Chem. A, Vol. 103, (1999), pp. 5791–5800. http://dx.doi.org/10.1021/jp9901242CrossrefGoogle Scholar

  • [12] M. Schädel: “Chemistry of superheavy elements”, Angew. Chem. Int. Ed., Vol. 45, (2006), pp. 368–401. http://dx.doi.org/10.1002/anie.200461072CrossrefGoogle Scholar

  • [13] U. Kaldor, E. Eliav and A. Landau: “Study of heavy elements by relativistic fock-space and intermediate hamiltonian coupled cluster methods”, in: E. J. Brandas and E. S. Kryachko (Eds.): Fundamental World of Quantum Chemistry, Vol. III, Kluwer Academic Publishers, Dordrecht, 2004, pp. 365–406. Google Scholar

  • [14] K.S. Pitzer: “Are elements 112, 114, and 118 relatively inert gases?”, J. Chem. Phys., Vol. 63, (1975), pp. 1032–1033. Google Scholar

  • [15] N.S. Mosyagin, T.A. Isaev and A.V. Titov: “Is E112 a relatively inert element? Benchmark relativistic correlation study of spectroscopic constants in E112H and its cation”, J. Chem. Phys., Vol. 124, (2006), art. 224302. Google Scholar

  • [16] A. Yakushev, I. Zvara, Y.T. Oganessian et al.: “Chemical identification and properties of element 112”, Radiochim. Acta, Vol. 91, (2003), pp. 433–439. http://dx.doi.org/10.1524/ract.91.8.433.20010CrossrefGoogle Scholar

  • [17] S. Soverna, R. Dressler, C.E. Düllmann et al.: “Thermochromatographic studies of mercury and radon on transition metal surfaces”, Radiochim. Acta, Vol. 93, (2005), pp. 1–8. http://dx.doi.org/10.1524/ract. Scholar

  • [18] Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov et al.: “Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca”, Phys. Rev. C, Vol. 70, (2004), art. 064609. Google Scholar

  • [19] K.E. Gregorich, W. Loveland, D. Peterson et al.: “Attempt to confirm superheavy element production in the 48Ca+238U reaction”, Phys. Rev. C, Vol. 72, (2005), art. 014605. Google Scholar

  • [20] N.S. Mosyagin, A.V. Titov and Z. Latajka: “Generalized relativistic effective core potential: Gaussian expansions of potentials and pseudospinors for atoms Hg through Rn”, Int. J. Quantum Chem., Vol. 63, (1997), pp. 1107–1122. http://dx.doi.org/10.1002/(SICI)1097-461X(1997)63:6<1107::AID-QUA4>3.0.CO;2-0CrossrefGoogle Scholar

  • [21] N.S. Mosyagin, A.N. Petrov, A.V. Titov and I.I. Tupitsyn: “GRECPs accounting for Breit effects in uranium, plutonium and superheavy elements 112, 113, 114”, In: Recent Advances in the Theory of Chemical and Physical Systems, Vol. 15 of Progr. Theor. Chem. Phys. (2006), arXiv: physics/ 0505207. Google Scholar

  • [22] A.V. Titov and N.S. Mosyagin: “Generalized relativistic effective core potential: Theoretical grounds”, Int. J. Quantum Chem., Vol. 71, (1999), pp. 359–401. http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:5<359::AID-QUA1>3.0.CO;2-UCrossrefGoogle Scholar

  • [23] I.I. Tupitsyn, N.S. Mosyagin and A.V. Titov: “Generalized relativistic effective core potential. I. Numerical calculations for atoms Hg through Bi”, J. Chem. Phys., Vol. 103, (1995), pp. 6548–6555. http://dx.doi.org/10.1063/1.470381CrossrefGoogle Scholar

  • [24] A.N. Petrov, N.S. Mosyagin, A.V. Titov and I. I. Tupitsyn: “Accounting for the Breit interaction in relativistic effective core potential calculations of actinides”, J. Phys. B, Vol. 37, (2004), pp. 4621–4637. http://dx.doi.org/10.1088/0953-4075/37/23/004CrossrefGoogle Scholar

  • [25] W.C. Ermler, R.B. Ross and P.A. Christiansen: “Spin-orbit coupling and other relativistic effects in atoms and molecules”, Adv. Quantum Chem., Vol. 19, (1988), pp. 139–182. http://dx.doi.org/10.1016/S0065-3276(08)60615-2CrossrefGoogle Scholar

  • [26] N.S. Mosyagin and A.V. Titov: 19-electron generalized RECP for Au: generation and test calculations, Petersburg Nuclear Physics Institute, Gatchina, 2006, http://www.qchem.pnpi.spb.ru/Basis/0602-E112-Hg-Au.pdf. Google Scholar

  • [27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople: GAUSSIAN 03, Rev. C.02, 2003, electronic structure modeling program. Google Scholar

  • [28] P.G. Szalay and R.J. Bartlett: “Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis”, J. Chem. Phys., Vol. 103, (1995), pp. 3600–3612. http://dx.doi.org/10.1063/1.470243CrossrefGoogle Scholar

  • [29] R. Shepard, I. Shavitt, R. Pitzer, D. Comeau, M. Pepper, H. Lischka, P. Szalay, R. Ahlrichs, F. Brown, and J. Zhao: “A progress report on the status of the columbus mrci program system”, Int. J. Quantum Chem.: Quantum Chem. Symp., Vol. 34(S22), (1988), pp. 149–165. http://dx.doi.org/10.1002/qua.560340819CrossrefGoogle Scholar

  • [30] H. Lischka, R. Shepard, I. Shavitt, R.M. Pitzer, M. Dallos, T. Müller, P.G. Szalay, F.B. Brown, R. Ahlrichs, H. Böhm, A. Chang, D. Comeau, R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Höchtl, G.K. S. Irle, T. Kovar, V. Parasuk, M. Pepper, P. Scharf, H. Schiffer, M. Schindler, M. Schüler, M. Seth, E. Stahlberg, J.-G. Zhao, S. Yabushita and Z. Zhang: COLUMBUS, version 5.8, 2001, Ab-initio electronic structure program. Google Scholar

  • [31] D. Figgen, G. Rauhut, M. Dolg and H. Stoll: “Energy consistent pseudopotentials for group 11 and group 12 atoms: Adjustment to multi-configuration Dirac-Hartree-Fock data”, Chem. Phys., Vol. 311, (2005), pp. 227–244. http://dx.doi.org/10.1016/j.chemphys.2004.10.005CrossrefGoogle Scholar

  • [32] M. Seth, P. Schwerdtfeger and M. Dolg: “The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4”, J. Chem. Phys., Vol. 106, (1997), pp. 3623–3632. http://dx.doi.org/10.1063/1.473437CrossrefGoogle Scholar

  • [33] D.E. Woon and T.H. Dunning, Jr: “Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties”, J. Chem. Phys., Vol. 100, (1994), pp. 2975–2988. http://dx.doi.org/10.1063/1.466439CrossrefGoogle Scholar

  • [34] H.L. Schmider and A.D. Becke: “Optimized density functionals from the extended G2 test set”, J. Chem. Phys., Vol. 108, (1998), pp. 9624–9631. http://dx.doi.org/10.1063/1.476438Google Scholar

  • [35] A. Becke: “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., Vol. 98, (1993), pp. 5648–5652. http://dx.doi.org/10.1063/1.464913CrossrefGoogle Scholar

  • [36] C. Adamo and V. Barone: “Toward reliable density functional methods without adjustable parameters: The PBE0 model”, J. Chem. Phys., Vol. 110, (1999), pp. 6158–6170. http://dx.doi.org/10.1063/1.478522CrossrefGoogle Scholar

  • [37] G. Herzberg: Spectra of Diatomic Molecules, Molecular spectra and Molecular structure, Van Nostrand-Reinhold, New York, 1950. Google Scholar

  • [38] W. C. Stwalley: “Mass-reduced quantum numbers: Application to the isotopic mercury hydrides”, J. Chem. Phys., Vol. 63, (1975), pp. 3062–3080. http://dx.doi.org/10.1063/1.431733CrossrefGoogle Scholar

  • [39] J. Dufayard, B. Majournat and O. Nedelec: “Predissociation of HgH A 2Π1/2 by inner crossing with X 2Σ+”, Chem. Phys., Vol. 128, (1988), pp. 537–547. http://dx.doi.org/10.1016/0301-0104(88)90019-5CrossrefGoogle Scholar

  • [40] N.S. Mosyagin, A.V. Titov, R.J. Buenker, H.-P. Liebermann and A.B. Alekseyev: “GRECP/MRD-CI calculations on the Hg atom and HgH molecule”, Int. J. Quantum Chem., Vol. 88, (2002), pp. 681–686. http://dx.doi.org/10.1002/qua.10220CrossrefGoogle Scholar

  • [41] R. Wesendrup and P. Schwerdtfeger: “Extremely strong s 2-s 2 closed-shell interactions”, Angew. Chem. Int. Ed., Vol. 39, (2000), pp. 907–910. http://dx.doi.org/10.1002/(SICI)1521-3773(20000303)39:5<907::AID-ANIE907>3.0.CO;2-MCrossrefGoogle Scholar

  • [42] A.D. Becke: “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, Vol. 38, (1988), pp. 3098–3100. http://dx.doi.org/10.1103/PhysRevA.38.3098CrossrefGoogle Scholar

  • [43] J.P. Perdew: “Density functional approximation for the correlation energy of the inhomogeneous electron gas”, Phys. Rev. B, Vol. 33, (1986), pp. 8822–8824. http://dx.doi.org/10.1103/PhysRevB.33.8822CrossrefGoogle Scholar

  • [44] A.B. Alekseyev, H.-P. Liebermann and R.J. Buenker: “Spin-orbit multireference configuration interaction method and applications to systems containing heavy atoms”, In: K. Hirao and Y. Ishikawa (Eds.): Recent Advances in Relativistic Molecular Theory, World Scientific, Singapore, 2004, pp. 65–105. Google Scholar

About the article

Published Online: 2006-12-01

Published in Print: 2006-12-01

Citation Information: Open Physics, Volume 4, Issue 4, Pages 448–460, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-006-0029-7.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Gopal Balamurugan, Parthiban Venkatesan, Shu Pao Wu, and Sivan Velmathi
RSC Adv., 2016, Volume 6, Number 29, Page 24229
Yuge Jiao and Theodore S. Dibble
The Journal of Physical Chemistry A, 2015, Volume 119, Number 42, Page 10502
Sergio Rampino, Loriano Storchi, and Leonardo Belpassi
The Journal of Chemical Physics, 2015, Volume 143, Number 2, Page 024307
Yu. A. Demidov and A. V. Zaitsevskii
Russian Chemical Bulletin, 2014, Volume 63, Number 8, Page 1647
Zhiyong Zhang
Theoretical Chemistry Accounts, 2014, Volume 133, Number 12
A. Borschevsky, V. Pershina, E. Eliav, and U. Kaldor
The Journal of Chemical Physics, 2014, Volume 141, Number 8, Page 084301
V. Carta, A. Ciccioli, and G. Gigli
The Journal of Chemical Physics, 2014, Volume 140, Number 6, Page 064305
Rajat K. Chaudhuri, Sudip Chattopadhyay, and Uttam Sinha Mahapatra
The Journal of Physical Chemistry A, 2013, Volume 117, Number 36, Page 8555
Andréi Zaitsevskii and Anatoly V. Titov
International Journal of Quantum Chemistry, 2013, Volume 113, Number 13, Page 1772
Andreas Türler and Valeria Pershina
Chemical Reviews, 2013, Volume 113, Number 2, Page 1237
Andréi Zaitsevskii, Anatoly V. Titov, Alexander A. Rusakov, and Christoph van Wüllen
Chemical Physics Letters, 2011, Volume 508, Number 4-6, Page 329
V. Pershina, A. Borschevsky, J. Anton, and T. Jacob
The Journal of Chemical Physics, 2010, Volume 133, Number 10, Page 104304
Andréi Zaitsevskii, Christoph van Wüllen, Elena A. Rykova, and Anatoly V. Titov
Physical Chemistry Chemical Physics, 2010, Volume 12, Number 16, Page 4152
Andréi Zaitsevskii, Christoph van Wüllen, and Anatoly V. Titov
The Journal of Chemical Physics, 2010, Volume 132, Number 8, Page 081102
V. Pershina, J. Anton, and T. Jacob
The Journal of Chemical Physics, 2009, Volume 131, Number 8, Page 084713
A. N. Petrov, N. S. Mosyagin, A. V. Titov, A. V. Zaitsevskii, and E. A. Rykova
Physics of Atomic Nuclei, 2009, Volume 72, Number 3, Page 396
Alexander Rusakov and André Zaitsevskii
Open Physics, 2008, Volume 6, Number 4
Alexander A. Rusakov, Elena Rykova, Gustavo E. Scuseria, and Andréi Zaitsevskii
The Journal of Chemical Physics, 2007, Volume 127, Number 16, Page 164322
E. A. Rykova, A. Zaitsevskii, N. S. Mosyagin, T. A. Isaev, and A. V. Titov
The Journal of Chemical Physics, 2006, Volume 125, Number 24, Page 241102

Comments (0)

Please log in or register to comment.
Log in