Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2016 (Open Physics): 0.745
IMPACT FACTOR 2016 (Central European Journal of Physics): 0.765

CiteScore 2016: 0.82

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142

Open Access
Online
ISSN
2391-5471
See all formats and pricing
In This Section
Volume 5, Issue 4 (Dec 2007)

Issues

Exact solutions of the radial Schrödinger equation for some physical potentials

Sameer Ikhdair
  • Department of Physics, Near East University, Nicosia, North Cyprus, Mersin-10, Turkey
  • Email:
/ Ramazan Sever
  • Department of Physics, Middle East Technical University, 06531, Ankara, Turkey
  • Email:
Published Online: 2007-12-01 | DOI: https://doi.org/10.2478/s11534-007-0022-9

Abstract

By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrödinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained.

Keywords: Wavefunction ansatz; pseudoharmonic potential; Kratzer’s potential; bound-states; eigenvalues and eigenfunctions

PACS: 03.65.-w; 03.65.Fd; 03.65.Ge

  • [1] L.I. Schiff: Quantum Mechanics, 3rd ed., McGraw-Hill Book Co., New York, 1955.

  • [2] L.D. Landau and E.M. Lifshitz: Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Pergamon, New York, 1977

  • [3] E.T. Whittaker and G.N. Watson: Modern Analysis, 4th ed., Cambridge University Press, London, 1927.

  • [4] R.L. Liboff: Introductory Quantum Mechanics, 4th ed., Addison Wesley, San Francisco, CA, 2003.

  • [5] M.M. Nieto: “Hydrogen atom and relativistic pi-mesic atom in N-space dimension”, Am. J. Phys., Vol. 47, (1979), pp. 1067–1072. http://dx.doi.org/10.1119/1.11976 [Crossref]

  • [6] S.M. Ikhdair and R. Sever: “Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential”, J. Mol. Struc.-Theochem, Vol. 806, (2007), pp. 155–158. http://dx.doi.org/10.1016/j.theochem.2006.11.019 [Crossref]

  • [7] S.M. Ikhdair and R. Sever: “Exact polynomial solutions of the Mie-type potential in the N-dimensional Schrödinger equation”, Preprint: arXiv:quant-ph/0611065.

  • [8] M. Sage and J. Goodisman: “Improving on the conventional presentation of molecular vibrations: Advantages of the pseudoharmonic potential and the direct construction of potential energy curves”, Am. J. Phys., Vol. 53, (1985), pp. 350–355. http://dx.doi.org/10.1119/1.14408 [Crossref]

  • [9] F. Cooper, A. Khare and U. Sukhatme: “Supersymmetry and quantum mechanics and large-N expansions ”, Phys. Rep., Vol. 251, (1995), pp. 267–385 http://dx.doi.org/10.1016/0370-1573(94)00080-M [Crossref]

  • [10] T.D. Imbo and U.P. Sukhatme: “Supersymmetric quantum mechanics”, Phys. Rev. Lett., Vol. 54, (1985), pp. 2184–2187. http://dx.doi.org/10.1103/PhysRevLett.54.2184 [Crossref]

  • [11] Z.-Q. Ma and B.-W. Xu: “Quantum correction in exact quantization rules”, Europhys. Lett., Vol. 69, (2005), pp. 685–691. http://dx.doi.org/10.1209/epl/i2004-10418-8 [Crossref]

  • [12] S.-H. Dong, C.-Y. Chen and M. Lozada-Casson: “Generalized hypervirial and Balanchard’s recurrence relations for radial matrix elements”, J. Phys. B: At. Mol. Opt. Phys., Vol. 38, (2005), pp. 2211–2220. http://dx.doi.org/10.1088/0953-4075/38/13/013 [Crossref]

  • [13] S.-H. Dong, D. Morales and J. Garc’ia-Ravelo: “Exact quantization rule and its applications to physical potentials”, Int. J. Mod. Phys. E, Vol. 16, (2007), pp. 189–198. http://dx.doi.org/10.1142/S0218301307005661 [Crossref]

  • [14] W.-C. Qiang and S.-H. Dong: “Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method”, Phys. Lett. A, Vol. 363, (2007), pp. 169–176. http://dx.doi.org/10.1016/j.physleta.2006.10.091 [Crossref]

  • [15] A.F. Nikiforov and V.B. Uvarov: Special Functions of Mathematical Physics, Birkhauser, Basel, 1988.

  • [16] G. Sezgo: Orthogonal Polynomials, American Mathematical Society, New York, 1959.

  • [17] S.M. Ikhdair and R. Sever: “Exact polynomial solution of PT/non-PT-symmetric and non-Hermitian modified Woods-Saxon potential by the Nikiforov-Uvarov method”, Preprint: arXiv:quant-ph/0507272; S.M. Ikhdair and R. Sever: “Polynomial solution of non-central potentials”, Preprint: arXiv:quant-ph/0702186.

  • [18] S.M. Ikhdair and R. Sever: “Exact solution of the Klein-Gordon equation for the PTsymmetric generalized Woods-Saxon potential by the Nikiforov-Uvarov method”, Ann. Phys. (Leipzig), Vol. 16, (2007), pp. 218–232. http://dx.doi.org/10.1002/andp.200610232 [Crossref]

  • [19] S.M. Ikhdair and R. Sever: “Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular momentum”, Preprint: arXiv:quant-ph/0508009.

  • [20] S.M. Ikhdair and R. Sever: “A perturbative treatment for the energy levels of neutral atoms”, Int. J. Mod. Phys. A, Vol. 21, (2006), pp. 6465–6476. http://dx.doi.org/10.1142/S0217751X06034240 [Crossref]

  • [21] S.M. Ikhdair and R. Sever: “Bound energy for the exponential-cosine-screened Coulomb potential”, Preprint: arXiv:quant-ph/0604073.

  • [22] S.M. Ikhdair and R. Sever: “Bound states of a more general exponential screened Coulomb potential”, Preprint: arXiv:quant-ph/0604078.

  • [23] S.M. Ikhdair and R. Sever: “A perturbative treatment for the bound states of the Hellmann potential”, J. Mol. Struc.-Theochem, Vol. 809, (2007), pp. 103–113. http://dx.doi.org/10.1016/j.theochem.2007.01.019 [Crossref]

  • [24] O. Bayrak, I. Boztosun and H. Ciftci: “Exact analytical solutions to the Kratzer potential by the asymptotic iteration method”, Int. J. Quantum Chem., Vol. 107, (2007), pp. 540–544. http://dx.doi.org/10.1002/qua.21141 [Crossref]

  • [25] R.L. Hall and N. Saad: “Smooth transformations of Kratzer’s potential in N dimensions”, J. Chem. Phys., Vol. 109, (1998), pp. 2983–2986. http://dx.doi.org/10.1063/1.476889 [Crossref]

  • [26] M.R. Setare and E. Karimi: “Algebraic approach to the Kratzer potential”, Phys. Scr., Vol. 75, (2007), pp. 90–93. http://dx.doi.org/10.1088/0031-8949/75/1/015 [Crossref]

  • [27] S.M. Ikhdair and R. Sever: “Heavy-quark bound states in potentials with the Bethe-Salpeter equation“, Z. Phys. C, Vol. 56, (1992), pp. 155–160 http://dx.doi.org/10.1007/BF01589718 [Crossref]

  • [28] S.M. Ikhdair and R. Sever: “Bethe-Salpeter equation for non-self-conjugate mesons in a power-law potential”, Z. Phys. C, Vol. 58, (1993), pp. 153–157 http://dx.doi.org/10.1007/BF01554088 [Crossref]

  • [29] S.M. Ikhdair and R. Sever: “Bound state enrgies for the exponential cosine screened Coulomb potential”, Z. Phys. D, Vol. 28, (1993), pp. 1–5

  • [30] S.M. Ikhdair and R. Sever: “Solution of the Bethe-Salpeter equation with the shifted 1/N expansion technique”, Hadronic J., Vol. 15, (1992), pp. 389–403

  • [31] S.M. Ikhdair and R. Sever: “Bc meson spectrum and hyperfine splittingsin the shifted large-N expansion technique”, Int. J. Mod. Phys. A, Vol. 18, (2003), pp. 4215–4231 http://dx.doi.org/10.1142/S0217751X03015088 [Crossref]

  • [32] S.M. Ikhdair and R. Sever: “Spectroscopy of Bc meson in the semi-relativistic quark model using the shifted large-N expansion method”, Int. J. Mod. Phys. A, Vol. 19, (2004), pp. 1771–1791 [Crossref]

  • [33] S.M. Ikhdair and R. Sever: “Bc and heavy meson spectroscopy in the local approximation of the Schrödinger equation with relativistic kinematics”, Int. J. Mod. Phys. A, Vol. 20, (2005), pp. 4035–4054 http://dx.doi.org/10.1142/S0217751X05022275 [Crossref]

  • [34] S.M. Ikhdair and R. Sever: “Mass spectra of heavy quarkonia and Bc decay constant for static scalar-vector interactions with relativistic kinematics”, Int. J. Mod. Phys. A, Vol. 20, (2005), pp. 6509–6531 http://dx.doi.org/10.1142/S0217751X05021294 [Crossref]

  • [35] S.M. Ikhdair and R. Sever: “Bound energy masses of mesons containing the fourth generation and iso-singlet quarks”, Int. J. Mod. Phys. A, Vol. 21, (2006), pp. 2191–2199 http://dx.doi.org/10.1142/S0217751X06031636 [Crossref]

  • [36] S.M. Ikhdair and R. Sever: “A systematic study on non-relativistic quarkonium interaction”, Int. J. Mod. Phys. A, Vol. 21, (2006), pp. 3989–4002 [Crossref]

  • [37] S.M. Ikhdair, O. Mustafa and R. Sever: “Light and heavy meson spectra in the shifted 1/N expansion method”, Tr. J. Phys., Vol. 16, (1992), pp. 510–518

  • [38] S.M. Ikhdair, O. Mustafa and R. Sever: “Solution of Dirac equation for vector and scalar potentials and some applications” Hadronic J., Vol. 16, (1993), pp. 57–74.

  • [39] S. Özçelik and M. Şimşek: “Exact solutions of the radial Schr"odinger equation for inverse-power potentials”, Phys. Lett. A, Vol. 152, (1991), pp. 145–150. http://dx.doi.org/10.1016/0375-9601(91)91081-N [Crossref]

  • [40] S.-H. Dong: “Schrödinger equation with the potential V (r) = Ar −4+Br −3+Cr −2+Dr −1”, Phys. Scr., Vol. 64, (2001), pp. 273–276; S.-H. Dong: “Exact solutions of the two-dimensional Schrödinger equation with certain central potentials”, Preprint: arXiv:quant-ph/0003100. http://dx.doi.org/10.1238/Physica.Regular.064a00273

  • [41] S.-H. Dong: “On the solutions of the Schrödinger equation with some anharmonic potentials”, Phys. Scr., Vol. 65, (2002), pp. 289–295. http://dx.doi.org/10.1238/Physica.Regular.065a00289 [Crossref]

  • [42] S.M. Ikhdair and R. Sever: “On the solutions of the Schrödinger equation with some molecular potentials: Wave function ansatz”, Preprint: arXiv:quant-ph/0702052.

  • [43] R.J. Le Roy and R.B. Bernstein: “Dissociation energy and long-range potential of diatomic molecules from vibration spacings of higher levels”, J. Chem. Phys., Vol. 52, (1970), pp. 3869–3879. http://dx.doi.org/10.1063/1.1673585 [Crossref]

  • [44] C. Berkdemir, A. Berkdemir and J. Han: “Bound state solutions of the Schrödinger equation for modified Kratzer’s molecular potential”, Chem. Phys. Lett., Vol. 417, (2006), pp. 326–329. http://dx.doi.org/10.1016/j.cplett.2005.10.039 [Crossref]

  • [45] A. Chatterjee: “Large N-expansion in Quantum mechanics, atomic physics and some O(N) invariant systems”, Phys. Rep., Vol. 186, (1990), pp. 249–370. http://dx.doi.org/10.1016/0370-1573(90)90048-7 [Crossref]

  • [46] G. Esposito: “Complex parameters in quantum mechanics”, Found. Phys. Lett., Vol. 11, (1998), pp. 636–547.

  • [47] G.A. Natanzon: “General properties of potentials for which the Schr"odinger equation can be solved by means of hypergeometric functions”, Theor. Math. Phys., Vol. 38, (1979), pp. 146–153. http://dx.doi.org/10.1007/BF01016836 [Crossref]

  • [48] G. Lévai: “A search for shape invariant solvable potentials”, J. Phys. A: Math. Gen., Vol. 22, (1989), pp. 689–702 http://dx.doi.org/10.1088/0305-4470/22/6/020 [Crossref]

  • [49] G. Lévai: “A class of exactly solvable potentials related to the Jacobi polynomials”; J. Phys. A: Math. Gen., Vol. 24, (1991), pp. 131–146. http://dx.doi.org/10.1088/0305-4470/24/1/022 [Crossref]

  • [50] K.J. Oyewumi and E.A. Bangudu: “Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces”, Arab. J. Sci. Eng., Vol. 28, (2003), pp. 173–182.

  • [51] P.M. Morse: “Diatomic molecules according to the wave mechanics. II. Vibrational levels”, Phys. Rev., Vol. 34, (1929), pp. 57–64 http://dx.doi.org/10.1103/PhysRev.34.57 [Crossref]

  • [52] N. Rosen and P.M. Morse: “On the vibrations of polyatomic molecules”, Phys. Rev., Vol. 42, (1932), pp 210–217. http://dx.doi.org/10.1103/PhysRev.42.210 [Crossref]

  • [53] K.J. Oyewumi: “Analytical solutions of the Kratzer-Fues potential in an arbitrary number of dimensions”, Found. Phys. Lett., Vol. 18, (2005), pp. 75–84. http://dx.doi.org/10.1007/s10702-005-2481-9 [Crossref]

About the article

Published Online: 2007-12-01

Published in Print: 2007-12-01



Citation Information: Open Physics, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-007-0022-9. Export Citation

© 2007 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Felix Iacob and Marina Lute
Journal of Mathematical Physics, 2015, Volume 56, Number 12, Page 121501
[2]
Sameer M. Ikhdair, Babatunde J. Falaye, and Majid Hamzavi
Annals of Physics, 2015, Volume 353, Page 282
[4]
B J Falaye, K J Oyewumi, S M Ikhdair, and M Hamzavi
Physica Scripta, 2014, Volume 89, Number 11, Page 115204
[6]
Sameer M. Ikhdair, Majid Hamzavi, and Babatunde J. Falaye
Applied Mathematics and Computation, 2013, Volume 225, Page 775
[7]
M. HAMZAVI and S. M. IKHDAIR
Modern Physics Letters B, 2013, Volume 27, Number 24, Page 1350176
[9]
Sameer M. Ikhdair and Majid Hamzavi
Chinese Physics B, 2012, Volume 21, Number 11, Page 110302
[10]
M. HAMZAVI, A. A. RAJABI, and H. HASSANABADI
International Journal of Modern Physics A, 2011, Volume 26, Number 07n08, Page 1363
[11]
SAMEER M. IKHDAIR and RAMAZAN SEVER
International Journal of Modern Physics C, 2008, Volume 19, Number 02, Page 221
[12]
M. Hamzavi, S. M. Ikhdair, and K.-E. Thylwe
Journal of Mathematical Chemistry, 2013, Volume 51, Number 1, Page 227
[13]
M. Hamzavi, M. Movahedi, K.-E. Thylwe, and A. A. Rajabi
Chinese Physics Letters, 2012, Volume 29, Number 8, Page 080302
[14]
Sameer M. Ikhdair and Majid Hamzavi
Few-Body Systems, 2012, Volume 53, Number 3-4, Page 487
[15]
M. Hamzavi and S.M. Ikhdair
Molecular Physics, 2012, Volume 110, Number 24, Page 3031
[17]
K. J. Oyewumi and K. D. Sen
Journal of Mathematical Chemistry, 2012, Volume 50, Number 5, Page 1039
[18]
Sameer M. Ikhdair
ISRN Mathematical Physics, 2012, Volume 2012, Page 1
[20]
Sameer M. Ikhdair and Ramazan Sever
Journal of Molecular Structure: THEOCHEM, 2008, Volume 855, Number 1-3, Page 13
[21]
M. Hamzavi and A. A. Rajabi
International Journal of Quantum Chemistry, 2012, Volume 112, Number 6, Page 1592
[22]
M. Hamzavi, A. A. Rajabi, and K.-E. Thylwe
International Journal of Quantum Chemistry, 2012, Volume 112, Number 15, Page 2701
[23]
Ali Akbar Babaei-Brojeny and Mojtaba Mokari
Physica Scripta, 2011, Volume 84, Number 4, Page 045003

Comments (0)

Please log in or register to comment.
Log in