Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2017: 0.83

SCImago Journal Rank (SJR) 2017: 0.241
Source Normalized Impact per Paper (SNIP) 2017: 0.537

ICV 2017: 162.45

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 8, Issue 1

Issues

Volume 13 (2015)

Stationary inverted Lyman populations and free-free and bound-free emission of lower-energy state hydride ion formed by an exothermic catalytic reaction of atomic hydrogen and certain group I catalysts

Randell Mills / William Good / Peter Jansson / Jiliang He
Published Online: 2009-11-15 | DOI: https://doi.org/10.2478/s11534-009-0052-6

Abstract

Rb+ to Rb2+ and 2K+ to K + K2+ each provide a reaction with a net enthalpy equal to the potential energy of atomic hydrogen. The presence of these gaseous ions with thermally dissociated hydrogen formed a plasma having strong VUV emission with a stationary inverted Lyman population. Significant Balmer α line broadening of 18 and 9 eV was observed from a rt-plasma of hydrogen with KNO3, and RbNO3, respectively, compared to 3 eV from a hydrogen microwave plasma. The reaction was exothermic since excess power of about 20 mW/cc was measured by Calvet calorimetry. We propose an energetic catalytic reaction involving a resonance energy transfer between hydrogen atoms and Rb+ or 2K+ to form a very stable novel hydride ion. Its predicted binding energy of 3.0471 eV with the fine structure was observed at 4071 Å, and its predicted bound-free hyperfine structure lines matched those observed for about 40 lines to within.01 percent. Characteristic emission from each catalyst was observed. This catalytic reaction may pump a CW HI laser.

Keywords: inverted H population; CW HI laser; H catalysis; novel hydride ion; exothermic

PACS: 33.20.Kf; 33.20.Ni; 52.25.Kn; 52.25.Os; 52.27.Aj

  • [1] C. Zimmermann, R. Kallenbach, T. W. Hansch, Phys. Rev. Lett. 65, 571 (1990) http://dx.doi.org/10.1103/PhysRevLett.65.571CrossrefGoogle Scholar

  • [2] T. Ibuki, Chem. Phys. Lett. 94, 169 (1990) Google Scholar

  • [3] R. Mills Ray, R. M. Mayo, Appl. Phys. Lett. 82, 1679 (2003) http://dx.doi.org/10.1063/1.1558213CrossrefGoogle Scholar

  • [4] L. I. Gudzenko, L. A. Shelepin, Sov. Phys. JEPT-USSR 18, 998 (1963) Google Scholar

  • [5] S. Suckewer, H. Fishman, J. Appl. Phys. 51, 1922 (1980) http://dx.doi.org/10.1063/1.327905CrossrefGoogle Scholar

  • [6] W. T. Silfvast, O. R. Wood, J. Opt. Soc. Am. B 4, 609 (1987) http://dx.doi.org/10.1364/JOSAB.4.000609CrossrefGoogle Scholar

  • [7] H. Akatsuka, M. Suzuki, Phys. Rev. E 49, 1534 (1994) http://dx.doi.org/10.1103/PhysRevE.49.1534CrossrefGoogle Scholar

  • [8] R. Mills, M. Nansteel Ray, IEEE T. Plasma Sci. 30, 639 (2002) http://dx.doi.org/10.1109/TPS.2002.1024263CrossrefGoogle Scholar

  • [9] R. Mills, M. Nansteel Ray, New J. Phys. 4, 70.1 (2002) Google Scholar

  • [10] R. Mills, J. Dong, Y. Lu, Int. J. Hydrogen Energ. 25, 919 (2000) http://dx.doi.org/10.1016/S0360-3199(00)00018-5CrossrefGoogle Scholar

  • [11] R. Mills, M. Nansteel, P. Ray, J. Plasma Phys 69, 131 (2003) http://dx.doi.org/10.1017/S0022377803002113CrossrefGoogle Scholar

  • [12] R. Mills, The Grand Unified Theory of Classical Quantum Mechanics, October 2007, www.blacklightpower.com/theory/bookdownload.shtml Google Scholar

  • [13] R. L. Mills, Phys. Essays 16, 433 (2003) http://dx.doi.org/10.4006/1.3025609CrossrefGoogle Scholar

  • [14] R. L. Mills, Phys. Essays 20, 403 (2007) http://dx.doi.org/10.4006/1.3153414CrossrefGoogle Scholar

  • [15] R. L. Mills, Phys. Essays 18, 321 (2005) http://dx.doi.org/10.4006/1.3025747CrossrefGoogle Scholar

  • [16] R. L. Mills, Phys. Essays 17, 342 (2004) http://dx.doi.org/10.4006/1.3025699CrossrefGoogle Scholar

  • [17] R. L. Mills, Phys. Essays 19, 225 (2006) http://dx.doi.org/10.4006/1.3025792CrossrefGoogle Scholar

  • [18] R. L. Mills, Phys. Essays 21, 103 (2008) http://dx.doi.org/10.4006/1.3009282CrossrefGoogle Scholar

  • [19] R. L. Mills, Annales de la Fondation Louis de Broglie 30, 129 (2005) Google Scholar

  • [20] R. Mills, Int. J. Hydrogen Energ. 27, 565 (2002) http://dx.doi.org/10.1016/S0360-3199(01)00144-6CrossrefGoogle Scholar

  • [21] R. Mills, Int. J. Hydrogen Energ. 26, 1059 (2001) http://dx.doi.org/10.1016/S0360-3199(01)00023-4CrossrefGoogle Scholar

  • [22] R. Mills, Int. J. Hydrogen Energ. 25, 1171 (2000) http://dx.doi.org/10.1016/S0360-3199(00)00035-5CrossrefGoogle Scholar

  • [23] N. V. Sidgwick, The Chemical Elements and Their Compounds, Volume I (Clarendon Press, Oxford, 1950) 17 Google Scholar

  • [24] M. D. Lamb, Luminescence Spectroscopy (Academic Press, London, 1978) 68 Google Scholar

  • [25] R. L. Mills et al., Int. J. Hydrogen Energ. 34, 573 (2009) http://dx.doi.org/10.1016/j.ijhydene.2008.10.018CrossrefGoogle Scholar

  • [26] R. L. Mills et al., Int. J. Hydrogen Energ. 32, 2988 (2007) http://dx.doi.org/10.1016/j.ijhydene.2007.03.035CrossrefGoogle Scholar

  • [27] R. Mills et al., Int. J. Hydrogen Energy 32, 2573 (2007) http://dx.doi.org/10.1016/j.ijhydene.2007.02.023CrossrefGoogle Scholar

  • [28] R. Mills et al., European Physical Journal-Applied Physics 28, 83 (2004) http://dx.doi.org/10.1051/epjap:2004168CrossrefGoogle Scholar

  • [29] R. L. Mills, J. He, M. Nansteel, B. Dhandapani, Int. J. Global Energy, Special Edition in Energy Systems 28, 304 (2007) http://dx.doi.org/10.1504/IJGEI.2007.015882CrossrefGoogle Scholar

  • [30] H. Conrads, R. Mills, Th. Wrubel, Plasma Sources Sci. T. 12, 389 (3003) http://dx.doi.org/10.1088/0963-0252/12/3/312CrossrefGoogle Scholar

  • [31] J. Phillips, R. L. Mills, X. Chen, J. Appl. Phys. 96, 3095 (2004) http://dx.doi.org/10.1063/1.1778212CrossrefGoogle Scholar

  • [32] R. L. Mills, X. Chen Ray, J. He, B. Dhandapani, Thermochim. Acta 406, 35 (2003) http://dx.doi.org/10.1016/S0040-6031(03)00228-4CrossrefGoogle Scholar

  • [33] R. Mills et al., Int. J. Hydrogen Energ. 26, 339 (2001) http://dx.doi.org/10.1016/S0360-3199(00)00113-0CrossrefGoogle Scholar

  • [34] R. Mills, B. Dhandapani, M. Nansteel, J. He, A. Voigt, Int. J. Hydrogen Energ. 26, 965 (2001) http://dx.doi.org/10.1016/S0360-3199(01)00027-1CrossrefGoogle Scholar

  • [35] R. Mills, B. Dhandapani, N. Greenig, J. He, Int. J. Hydrogen Energ. 25, 1185 (2000) http://dx.doi.org/10.1016/S0360-3199(00)00037-9CrossrefGoogle Scholar

  • [36] R. L. Mills Ray, J. Phys. D Appl. Phys. 36, 1535 (2003) http://dx.doi.org/10.1088/0022-3727/36/13/316CrossrefGoogle Scholar

  • [37] R. L. Mills Ray, B. Dhandapani, M. Nansteel, X. Chen, J. He, J Mol. Struct. 643, 43 (2002) http://dx.doi.org/10.1016/S0022-2860(02)00355-1CrossrefGoogle Scholar

  • [38] R. Mills Ray, Int. J. Hydrogen Energ. 27, 301 (2002) http://dx.doi.org/10.1016/S0360-3199(01)00116-1CrossrefGoogle Scholar

  • [39] R. L. Mills Ray, Int. J. Hydrogen Energ. 28, 825 (2003) http://dx.doi.org/10.1016/S0360-3199(02)00167-2CrossrefGoogle Scholar

  • [40] R. Mills, Int. J. Hydrogen Energ. 26, 1041 (2001) http://dx.doi.org/10.1016/S0360-3199(01)00041-6CrossrefGoogle Scholar

  • [41] R. L. Mills Ray, B. Dhandapani, R. M. Mayo, J. He, J. Appl. Phys. 92, 7008 (2002) http://dx.doi.org/10.1063/1.1522483CrossrefGoogle Scholar

  • [42] R. L. Mills Ray, B. Dhandapani, J. He, IEEE T. Plasma Sci. 31, 338 (2003) http://dx.doi.org/10.1109/TPS.2003.812340CrossrefGoogle Scholar

  • [43] R. L. Mills Ray, New J. Phys. 4, 22.1 (2002) Google Scholar

  • [44] R. L. Mills, B. Dhandapani, K. Akhtar, Int. J. Hydrogen Energ. 33, 802 (2008) http://dx.doi.org/10.1016/j.ijhydene.2007.10.016CrossrefGoogle Scholar

  • [45] R. Mills Ray, B. Dhandapani, J. Plasma Phys. 72, 469 (2006) http://dx.doi.org/10.1017/S0022377805004034CrossrefGoogle Scholar

  • [46] J. Phillips, C.-K. Chen, K. Akhtar, B. Dhandapani, R. Mills, Int. J. Hydrogen Energ. 32, 3010 (2007) http://dx.doi.org/10.1016/j.ijhydene.2007.01.022CrossrefGoogle Scholar

  • [47] R. L. Mills et al., J. Plasma Phys. 71, 877 (2005) http://dx.doi.org/10.1017/S0022377805003703CrossrefGoogle Scholar

  • [48] R. Mills Ray, R. M. Mayo, IEEE T. Plasma Sci. 31, 236 (2003) http://dx.doi.org/10.1109/TPS.2003.810174CrossrefGoogle Scholar

  • [49] R. L. Mills Ray, J. Phys. D Appl. Phys. 36, 1504 (2003) http://dx.doi.org/10.1088/0022-3727/36/13/312CrossrefGoogle Scholar

  • [50] R. Mills Ray, R. M. Mayo, Appl. Phys. Lett. 82, 1679 (2003) http://dx.doi.org/10.1063/1.1558213CrossrefGoogle Scholar

  • [51] F. F. Chen, In: R. H. Huddleston, S. L. Leonard (Eds.), Plasma Diagnostic Techniques (Academic Press, NY, 1965) Google Scholar

  • [52] M. C. Bradford, J. Phillips, J. Klanchar, Rev. Sci. Instrum. 66, 171 (1995) http://dx.doi.org/10.1063/1.1145254CrossrefGoogle Scholar

  • [53] C. J. Hardy, B. O. Field, J. Chem. Soc., 5130 (1963) Google Scholar

  • [54] R. Kelly, J. Phys. Chem. Ref. Data 16, 418 (1987) Google Scholar

  • [55] S. B. Radovanov, K. Dzierzega, J. R. Roberts, J. K. Olthoff, Appl. Phys. Lett. 66, 2637 (1995) http://dx.doi.org/10.1063/1.113109CrossrefGoogle Scholar

  • [56] K. R. Lykke, K. K. Murray, W. C. Lineberger, Phys. Rev. A 43, 6104 (1991) http://dx.doi.org/10.1103/PhysRevA.43.6104CrossrefGoogle Scholar

  • [57] M. Stix, The Sun (Springer-Verlag, Berlin, 1991) 136 Google Scholar

About the article

Published Online: 2009-11-15

Published in Print: 2010-02-01


Citation Information: Open Physics, Volume 8, Issue 1, Pages 7–16, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-009-0052-6.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in