Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2016 (Open Physics): 0.745
IMPACT FACTOR 2016 (Central European Journal of Physics): 0.765

CiteScore 2016: 0.82

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 8, Issue 1

Issues

Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test

Lorenzo Iorio
Published Online: 2009-11-15 | DOI: https://doi.org/10.2478/s11534-009-0060-6

Abstract

We deal with the test of the general relativistic gravitomagnetic Lense-Thirring effect currently being conducted in the Earth’s gravitational field with the combined nodes Ω of the laser-ranged geodetic satellites LAGEOS and LAGEOS II. One of the most important sources of systematic uncertainty on the orbits of the LAGEOS satellites, with respect to the Lense-Thirring signature, is the bias due to the even zonal harmonic coefficients J ℓ of the multipolar expansion of the Earth’s geopotential which account for the departures from sphericity of the terrestrial gravitational potential induced by the centrifugal effects of its diurnal rotation. The issue addressed here is: are the so far published evaluations of such a systematic error reliable and realistic? The answer is negative. Indeed, if the difference ΔJ ℓ among the even zonals estimated in different global solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008, AIUB-GRACE01S) is assumed for the uncertainties δJ ℓ instead of using their more-or-less calibrated covariances $$ \sigma _{J_\ell } $$, it turns out that the systematic error δμ in the Lense-Thirring measurement is about 3 to 4 times larger than in the evaluations so far published based on the use of the covariances of one model at a time separately, amounting up to 37% for the pair EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based models yields bias as large as about 25–30%. The major discrepancies still occur for J 4; J 6 and J 8, which are just to which the zonals the combined LAGEOS/LAGOES II nodes are most sensitive.

PACS: 04.; 04.80.-y; 04.80.Cc

Keywords: experimental tests of gravitational theories; satellite orbits; harmonics of the gravity potential field

  • [1] B. Mashhoon, In: L. Iorio (Ed.), The Measurement of Gravitomagnetism: A Challenging Enterprise (NOVA, Hauppauge, 2007) 29 Google Scholar

  • [2] M. L. Ruggiero, A. Tartaglia, Nuovo Cimento B 117, 743 (2002) Google Scholar

  • [3] G. E. Pugh, WSEG Research Memorandum No. 11, 1959 Google Scholar

  • [4] L. Schiff, Phys. Rev. Lett. 4, 215 (1960) http://dx.doi.org/10.1103/PhysRevLett.4.215CrossrefGoogle Scholar

  • [5] H. Pfister, Gen. Relat. Gravit. 39, 1735 (2007) http://dx.doi.org/10.1007/s10714-007-0521-4CrossrefGoogle Scholar

  • [6] J. Lense, H. Thirring, Phys. Z. 19, 156 (1918) Google Scholar

  • [7] C. W. F. Everitt, In: B. Bertotti (Ed.), Proc. Int. School Phys. “Enrico Fermi” Course LVI (New Academic Press, New York, 1974) 331 Google Scholar

  • [8] C. W. F. Everitt et al., In: C. Lämmerzahl, C. W. F. Everitt, F. W. Hehl (Ed.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space (Springer, Berlin, 2001) 52 http://dx.doi.org/10.1007/3-540-40988-2_4CrossrefGoogle Scholar

  • [9] I. Ciufolini, E. C. Pavlis, Nature 431, 958 (2004) http://dx.doi.org/10.1038/nature03007CrossrefGoogle Scholar

  • [10] M. R. Pearlman, J. J. Degnan, J. M. Bosworth, Adv. Space Res. 30, 135 (2002) http://dx.doi.org/10.1016/S0273-1177(02)00277-6CrossrefGoogle Scholar

  • [11] R. A. Van Patten, C. W. F. Everitt, Phys. Rev. Lett. 36, 629 (1976) http://dx.doi.org/10.1103/PhysRevLett.36.629CrossrefGoogle Scholar

  • [12] R. A. Van Patten, C. W. F. Everitt, Celest. Mech. Dyn. Astr. 13, 429 (1976) Google Scholar

  • [13] I. Ciufolini, Phys. Rev. Lett. 56, 278 (1986) http://dx.doi.org/10.1103/PhysRevLett.56.278CrossrefGoogle Scholar

  • [14] J. C. Ries, R. J. Eanes, M. M. Watkins, B. Tapley, Joint NASA/ASI Study on Measuring the Lense-Thirring Precession Using a Second LAGEOS Satellite CSR-89-3, The University of Texas at Austin: Center for Space Research (Austin, TX, 1989) Google Scholar

  • [15] I. Ciufolini et al., LARES Phase A, University La Sapienza (Rome, Italy, 1998) Google Scholar

  • [16] L. Iorio, D. M. Lucchesi, I. Ciufolini, Classical Quant. Grav. (19), 4311 (2002) CrossrefGoogle Scholar

  • [17] D. M. Lucchesi, A. Paolozzi, In: XVI Congresso Nazionale AIDAA, 24–28 Sept. 2001, Palermo, Italy Google Scholar

  • [18] L. Iorio, Classical Quant. Grav. 19, L175 (2002) http://dx.doi.org/10.1088/0264-9381/19/17/103CrossrefGoogle Scholar

  • [19] I. Ciufolini, arXiv:gr-qc/0412001v3 Google Scholar

  • [20] I. Ciufolini, arXiv:gr-qc/0609081v1 Google Scholar

  • [21] L. Iorio, Journal of Cosmology and Astroparticle Physics 7, 8 (2005) http://dx.doi.org/10.1088/1475-7516/2005/07/008CrossrefGoogle Scholar

  • [22] L. Iorio, Planet. Space Sci. 55, 1198 (2007) http://dx.doi.org/10.1016/j.pss.2007.03.005CrossrefGoogle Scholar

  • [23] L. Iorio, Europhys. Lett. 80, 40007 (2007) http://dx.doi.org/10.1209/0295-5075/80/40007CrossrefGoogle Scholar

  • [24] L. Iorio, Adv. Space Res. 43, 1148 (2009) http://dx.doi.org/10.1016/j.asr.2008.10.016CrossrefGoogle Scholar

  • [25] L. Cugusi, E. Proverbio, Astron. Astrophys. 69, 321 (1978) Google Scholar

  • [26] I. Ciufolini, D. M. Lucchesi, F. Vespe, A. Mandiello, Nuovo Cimento A 109, 575 (1996) http://dx.doi.org/10.1007/BF02731140CrossrefGoogle Scholar

  • [27] I. Ciufolini, Nuovo Cimento A 109, 1709 (1996) http://dx.doi.org/10.1007/BF02773551CrossrefGoogle Scholar

  • [28] I. Ciufolini, E. C. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Pérez-Mercader, Science 279, 2100 (1998) http://dx.doi.org/10.1126/science.279.5359.2100CrossrefGoogle Scholar

  • [29] F. G. Lemoine et al., NASA/TP-1998-206861 (1998) Google Scholar

  • [30] L. Iorio, Celest. Mech. Dyn. Astr. 86, 277 (2003) http://dx.doi.org/10.1023/A:1024223200686CrossrefGoogle Scholar

  • [31] J. C. Ries, R. J. Eanes, B. D. Tapley, In: R. J. Ruffini, C. Sigismondi (Eds.), Nonlinear Gravitodynamics. The Lense-Thirring Effect (World Scientific, Singapore, 2003) 201 Google Scholar

  • [32] J. C. Ries, R. J. Eanes, B. D. Tapley, G. E. Peterson, In: R. Noomen, S. Klosko, C. Noll, M. Pearlman (Eds.), Proc. 13th Int. Laser Ranging Workshop, NASA CP (2003-212248 (NASA Goddard, Greenbelt, 2003) Google Scholar

  • [33] A. Milani, A. M. Nobili, P. Farinella, Non-gravitational perturbations and satellite geodesy (Adam Hilger, Bristol, 1987) Google Scholar

  • [34] P. Inversi, F. Vespe, Adv. Space Res. 14, 73 (1994) http://dx.doi.org/10.1016/0273-1177(94)90099-XCrossrefGoogle Scholar

  • [35] F. Vespe, Adv. Space Res. 23, 699 (1999) http://dx.doi.org/10.1016/S0273-1177(99)00135-0CrossrefGoogle Scholar

  • [36] D. M. Lucchesi, Planet. Space Sci. 49, 447 (2001) http://dx.doi.org/10.1016/S0032-0633(00)00168-9CrossrefGoogle Scholar

  • [37] D. M. Lucchesi, Planet. Space Sci. 50, 1067 (2002) http://dx.doi.org/10.1016/S0032-0633(02)00052-1CrossrefGoogle Scholar

  • [38] D. M. Lucchesi, Geophys. Res. Lett. 30, 1957 (2003) http://dx.doi.org/10.1029/2003GL017741CrossrefGoogle Scholar

  • [39] D. M. Lucchesi, Celest. Mech. Dyn. Astr. 88, 269 (2004) http://dx.doi.org/10.1023/B:CELE.0000017171.78328.f1CrossrefGoogle Scholar

  • [40] D. M. Lucchesi et al., Planet. Space Sci. 52, 699 (2004) http://dx.doi.org/10.1016/j.pss.2004.01.007CrossrefGoogle Scholar

  • [41] Ch. Reigber et al., J. Geodyn. 39 1 (2005) http://dx.doi.org/10.1016/j.jog.2004.07.001CrossrefGoogle Scholar

  • [42] J. C. Ries, R. J. Eanes, M. M. Watkins, In: S. Schillak (Ed.), 16th Int. Laser Ranging Workshop, 13–17 Oct. 2008, Poznan, Poland Google Scholar

  • [43] E.C. Pavlis, In: R. Cianci, R. Collina, M. Francaviglia, P. Fré (Eds.), Recent Developments in General Relativity: Proc. 14th SIGRAV Conf. on General Relativity Gravitational Physics, 18–22 Sept. 2000, Genova, Italy (Springer, Milan, 2000) 217 Google Scholar

  • [44] L. Iorio, A. Morea, Gen. Relat. Gravit. 36, 1321 (2004) http://dx.doi.org/10.1023/B:GERG.0000022390.05674.99CrossrefGoogle Scholar

  • [45] W. M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966) Google Scholar

  • [46] L. Iorio (Ed.), The Measurement of Gravitomagnetism: A Challenging Enterprise (NOVA, Hauppauge, 2007) Google Scholar

  • [47] I. Ciufolini, E. C. Pavlis, New Astron. 10, 636 (2005) http://dx.doi.org/10.1016/j.newast.2005.04.003CrossrefGoogle Scholar

  • [48] I. Ciufolini, E. C. Pavlis, R. Peron, New Astron. 11, 527 (2006) http://dx.doi.org/10.1016/j.newast.2006.02.001CrossrefGoogle Scholar

  • [49] L. Iorio, New Astron. 10, 603 (2005) http://dx.doi.org/10.1016/j.newast.2005.01.001CrossrefGoogle Scholar

  • [50] L. Iorio, J. Geodesy 80, 128, (2006) http://dx.doi.org/10.1007/s00190-006-0058-4CrossrefGoogle Scholar

  • [51] L. Iorio, Gen. Relat. Gravit. 38, 523 (2006) http://dx.doi.org/10.1007/s10714-006-0239-8CrossrefGoogle Scholar

  • [52] L. Iorio, Planet. Space Sci. 55, 503 (2007) http://dx.doi.org/10.1016/j.pss.2006.08.001CrossrefGoogle Scholar

  • [53] D. M. Lucchesi, Int. J. Mod. Phys. D 14, 1989 (2005) http://dx.doi.org/10.1142/S0218271805008169CrossrefGoogle Scholar

  • [54] D. M. Lucchesi, Adv. Space Res. 39, 1559 (2007) http://dx.doi.org/10.1016/j.asr.2007.04.040CrossrefGoogle Scholar

  • [55] F. J. Lerch et al., J. Geophys. Res. 99(B2), 2815 (1994) http://dx.doi.org/10.1029/93JB02759CrossrefGoogle Scholar

  • [56] B. D. Tapley et al., In: American Geophysical Union, Fall Meeting 2007, abstract #G42A-03 Google Scholar

  • [57] C. Förste et al., In: EGU General Assembly 2005, 24–29 April 2005, Vienna, Austria Google Scholar

  • [58] B. D. Tapley et al. J. Geodesy 79, 467 (2005) http://dx.doi.org/10.1007/s00190-005-0480-zCrossrefGoogle Scholar

  • [59] T. Mayer-Gürr, A. Eicker, K.-H. Ilk, In: 1st Int. Symp. of the International Gravity Field Service “GRAVITY FIELD OF THE EARTH”, 28 August–1 September 2006, Istanbul, Turkey Google Scholar

  • [60] T. Mayer-Gürr, In: Joint Int. GSTMDFG SPP Symp., 15–17 Oct. 2007, Potsdam, Germany Google Scholar

  • [61] N. K. Pavlis et al., In: 2008 General Assembly of the European Geosciences Union, 13–18 April 2008, Vienna, Austria Google Scholar

  • [62] A. Jäggi, G. Beutler, L. Gmervart, In: IAG Symposium on “Gravity, Geoid, Earth Observation 2008”, 23–27 June 2008, Chania, Greece Google Scholar

  • [63] D. M. Lucchesi, G. Balmino, Planet. Space Sci. 54, 581 (2006) Google Scholar

  • [64] L. Combrinck, S. Schillak (Ed.), 16th Int. Laser Ranging Workshop, 13–17 Oct. 2008, Poznan, Poland Google Scholar

About the article

Published Online: 2009-11-15

Published in Print: 2010-02-01


Citation Information: Open Physics, Volume 8, Issue 1, Pages 25–32, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-009-0060-6.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
R. Angelil and P. Saha
Monthly Notices of the Royal Astronomical Society, 2014, Volume 444, Number 4, Page 3780
[4]
Lorenzo Iorio, Matteo Luca Ruggiero, and Christian Corda
Acta Astronautica, 2013, Volume 91, Page 141
[6]
G. Renzetti
New Astronomy, 2013, Volume 23-24, Page 63
[7]
G. Renzetti
Canadian Journal of Physics, 2012, Volume 90, Number 9, Page 883
[8]
Lorenzo Iorio
New Astronomy, 2010, Volume 15, Number 6, Page 554
[9]
Lorenzo Iorio, Herbert I. M. Lichtenegger, Matteo Luca Ruggiero, and Christian Corda
Astrophysics and Space Science, 2011, Volume 331, Number 2, Page 351

Comments (0)

Please log in or register to comment.
Log in