Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina


IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2018: 147.55

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 8, Issue 2

Issues

Volume 13 (2015)

Photothermal methods for determination of thermal properties of bulk materials and thin films

Jerzy Bodzenta / Anna Kaźmierczak-Bałata / Jacek Mazur
Published Online: 2010-01-30 | DOI: https://doi.org/10.2478/s11534-009-0133-6

Abstract

Information on the thermal properties of materials is very important both in fundamental physical research and in engineering applications. The development of materials with desirable heat transport properties requires methods for their experimental determination. In this paper basic concepts of the measurement of parameters describing the heat transport in solids are discussed. Attention is paid to methods utilizing nonstationary temperature fields, especially to photothermal methods in which the temperature disturbance in the investigated sample is generated through light absorption. Exemplary photothermal measuring techniques, which can be realized using common experimental equipment, are described in detail. It is shown that using these techniques it is possible to determine the thermal diffusivity of bulk transparent samples, opaque and semi-transparent plate-form samples, and the thermal conductivity of thin films deposited on thick substrates. Results of the investigation of thermal diffusivity of the ground in the polar region, which is based on the analysis of the propagation of the thermal wave generated by sun-light, are also presented. Based on chosen examples one can state that photothermal techniques can be used for determination of the thermal properties of very different materials.

Keywords: measuring methods; photothermal methods; thermal properties; thermal waves in solids

  • [1] C. Kittel, Introduction to solid state physics (John Wiley and Sons, New York, Chichester, 1996) Google Scholar

  • [2] P. K. Schelling, L. Shi, K. E. Goodson, Mater. Today 6, 30 (2005) http://dx.doi.org/10.1016/S1369-7021(05)70935-4CrossrefGoogle Scholar

  • [3] U. Schulz et al., Ceram. Eng. Sci. Proc. 25, 375 (2004) http://dx.doi.org/10.1002/9780470291191.ch57CrossrefGoogle Scholar

  • [4] J. Bodzenta, Thermal waves in investigations of solids (Silesian University of Technology, Gliwice, Poland, 1999) Google Scholar

  • [5] H. S. Carslaw, J. C. Jaeger, Conduction of heat in solids (Oxford Science Publications, New York, 1986) Google Scholar

  • [6] ASTM E1225-04: Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique Google Scholar

  • [7] ASTM C518-04: Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus Google Scholar

  • [8] ASTM E1530-04:Standard Test Method for Evaluating the Resistance to Thermal Transmission of Materials by the Guarded Heat Flow Meter Technique Google Scholar

  • [9] ASTM C177-04: Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus Google Scholar

  • [10] ISO 8302:1991 Thermal insulation - Determination of steady-state thermal resistance and related properties - Guarded hot plate apparatus Google Scholar

  • [11] W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, J. Appl. Phys. 32, 1679 (1961) http://dx.doi.org/10.1063/1.1728417CrossrefGoogle Scholar

  • [12] ASTM E1461-07: Standard Test Method for Thermal Diffusivity by the Flash Method Google Scholar

  • [13] ISO 18755:2005 Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of thermal diffusivity of monolithic ceramics by laser flash method Google Scholar

  • [14] D. Y. Tzou, Int. J. Heat Mass Tran. 36, 401 (1993) http://dx.doi.org/10.1016/0017-9310(93)80016-NCrossrefGoogle Scholar

  • [15] A. Mandelis, K. F. Leung, J. Opt. Soc. Am. A 8, 186 (1991) http://dx.doi.org/10.1364/JOSAA.8.000186CrossrefGoogle Scholar

  • [16] J. Bodzenta, Chaos, Solitons and Fractals 10, 2087 (1999) http://dx.doi.org/10.1016/S0960-0779(98)00250-1CrossrefGoogle Scholar

  • [17] C. A. Paddock, G. L. Eesley, J. Appl. Phys. 60, 285 (1986) http://dx.doi.org/10.1063/1.337642CrossrefGoogle Scholar

  • [18] D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004) http://dx.doi.org/10.1063/1.1819431CrossrefGoogle Scholar

  • [19] D. G. Cahill, K. Goodson, A. Majumdar, J. Heat Transf. 124, 223 (2002) http://dx.doi.org/10.1115/1.1454111CrossrefGoogle Scholar

  • [20] A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980) http://dx.doi.org/10.1063/1.91395CrossrefGoogle Scholar

  • [21] J. C. Murphy, L. C. Aamodt, J. Appl. Phys. 51, 4580 (1980) http://dx.doi.org/10.1063/1.328350CrossrefGoogle Scholar

  • [22] A. L. Glazov, K. L. Muratikov, Tech. Phys.+ 38, 344 (1993) Google Scholar

  • [23] D. Korte Kobylinska, R. J. Bukowski, B. Burak, J. Bodzenta, S. Kochowski, J. Appl. Phys. 100, 063501 (2006) http://dx.doi.org/10.1063/1.2337257CrossrefGoogle Scholar

  • [24] L. C. Aamodt, J. C. Murphy, J. Appl. Phys. 52, 4903 (1981) http://dx.doi.org/10.1063/1.329451CrossrefGoogle Scholar

  • [25] J. Bodzenta, W. Hofman, M. Gała, T. Łukasiewicz, M. Pyka, J. Phys. IV 129, 195 (2005) Google Scholar

  • [26] J. Bodzenta, M. Pyka, J. Phys. IV 137, 259 (2006) Google Scholar

  • [27] J. Bodzenta, A. Kazmierczak-Bałata, T. Łukasiewicz, M. Pyka, Eur. Phys. J. Spec. Top. 153, 135 (2008) http://dx.doi.org/10.1140/epjst/e2008-00411-yCrossrefGoogle Scholar

  • [28] J. Bodzenta, A. Kazmierczak-Bałata, K. Wokulska, J. Kucytowski, T. Łukasiewicz, W. Hofman, Appl. Optics 48, C46 (2009) http://dx.doi.org/10.1364/AO.48.000C46CrossrefGoogle Scholar

  • [29] J. Bodzenta et al., Dent. Mater. 22, 617 (2006) http://dx.doi.org/10.1016/j.dental.2005.05.016CrossrefGoogle Scholar

  • [30] D. R. Lide, CRC Handbook of Chemistry and Physics, 84th edition (CRC Press, Boca Raton, Florida, 2008) Google Scholar

  • [31] J. Bodzenta, J. Mazur, R. Bukowski, Z. Kleszczewski, Proc. SPIE 2643, 286 (1995) http://dx.doi.org/10.1117/12.222756CrossrefGoogle Scholar

  • [32] J. Bodzenta, A. Kazmierczak-Bałata, J. Phys. IV 137, 245 (2006) Google Scholar

  • [33] J. Bodzenta et al., Eur. Phys. J.-Spec. Top. 153, 79 (2008) http://dx.doi.org/10.1140/epjst/e2008-00397-4CrossrefGoogle Scholar

  • [34] J. Bodzenta, J. Mazur, Z. Kleszczewski, Journal of Chemical Vapor Deposition 5, 288 (1997) Google Scholar

  • [35] J. Bodzenta, B. Burak, A. Jagoda, B. Stanczyk, Diam. Relat. Mater. 14, 1169 (2005) http://dx.doi.org/10.1016/j.diamond.2005.01.016CrossrefGoogle Scholar

  • [36] J. Mazur, P. Dolnicki, J. Phys. IV 109, 59 (2003) Google Scholar

About the article

Published Online: 2010-01-30

Published in Print: 2010-04-01


Citation Information: Open Physics, Volume 8, Issue 2, Pages 207–220, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-009-0133-6.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kyle Horne, Austin Fleming, Ben Timmins, and Heng Ban
Metrologia, 2015, Volume 52, Number 6, Page 783
[2]
D. Trefon-Radziejewska, J. Bodzenta, and T. Łukasiewicz
International Journal of Thermophysics, 2013, Volume 34, Number 5, Page 813
[3]
J. Bodzenta, J. Mazur, and A. Kaźmierczak-Bałata
Applied Physics B, 2011, Volume 105, Number 3, Page 623

Comments (0)

Please log in or register to comment.
Log in