Jump to ContentJump to Main Navigation
Show Summary Details

Open Physics

formerly Central European Journal of Physics


IMPACT FACTOR 2015: 0.948
5-year IMPACT FACTOR: 0.977

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142
Impact per Publication (IPP) 2015: 1.222

Open Access
Online
ISSN
2391-5471
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

Effects of Hall current on unsteady MHD flows of a second grade fluid

1Department of Mathematics, University of Sargodha, Sargodha, Pakistan

2Department of Mathematics, Quaid-i-Azam University 45320, Islamabad, 44000, Pakistan

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Physics. Volume 8, Issue 3, Pages 422–431, ISSN (Online) 2391-5471, DOI: 10.2478/s11534-009-0083-z, April 2010

Publication History

Published Online:
2010-04-24

Abstract

The aim of this present paper is to construct exact solutions corresponding to the motion of magnetohydrodynamic (MHD) fluid in the presence of Hall current, due to cosine and sine oscillations of a rigid plate as well as those induced by an oscillating pressure gradient. A uniform magnetic field is applied transversely to the flow. By using Fourier sine transform steady state and transient solutions are presented. These solutions satisfy the governing equations and all associated initial and boundary conditions. The results for a hydrodynamic second grade fluid can be obtained as a limiting case when B 0 → 0 and for a Newtonian fluid when α 1 → 0.

Keywords: Hall current; MHD flow; Fourier sine transform

  • [1] R. S. Rivlin, J. L. Ericksen, J. Ration. Mech. Anal. 4, 323 (1955)

  • [2] K. R. Rajagopal, Int. J. Nonlinear Mech. 17, 369 (1982) http://dx.doi.org/10.1016/0020-7462(82)90006-3 [CrossRef]

  • [3] K. R. Rajagopal, Acta Mech. 49, 281 (1983) http://dx.doi.org/10.1007/BF01236358 [CrossRef]

  • [4] K. R. Rajagopal, R. K. Bhatnagar, Acta Mech. 113, 233 (1995) http://dx.doi.org/10.1007/BF01212645 [CrossRef]

  • [5] C. Corina Fetecau, C. Fectecau, Int. J. Eng. Sci. 43, 781 (2005) http://dx.doi.org/10.1016/j.ijengsci.2004.12.009 [CrossRef]

  • [6] C. Fectecau, Int. J. Nonlinear Mech. 39, 225 (2004) http://dx.doi.org/10.1016/S0020-7462(02)00170-1 [CrossRef]

  • [7] M. E. Erdogan, C. E. Imrak, Appl. Math. Model. 31, 170 (2007) http://dx.doi.org/10.1016/j.apm.2005.08.019 [CrossRef]

  • [8] T. Hayat, S. Asghar, A. M. Siddiqui, J. Eng. Sci. 38, 337 (2000) http://dx.doi.org/10.1016/S0020-7225(99)00034-8 [CrossRef]

  • [9] T. Hayat, M. Khan, A. M. Siddiqui, S. Asghar, Int. J. Nonlinear Mech. 39, 1621 (2004) http://dx.doi.org/10.1016/j.ijnonlinmec.2002.12.001 [CrossRef]

  • [10] T. Hayat, M. Khan, M. Ayub, A. M. Siddiqui, Arch. Mech. 57, 403 (2005)

  • [11] R. L. Fosdick, K. R. Rajagopal, Arch. Ration. Mech. An. 70, 145 (1979)

  • [12] J. E. Dunn, K. R. Rajagopal, Int. J. Eng. Sci. 33, 689 (1995) http://dx.doi.org/10.1016/0020-7225(94)00078-X [CrossRef]

  • [13] V. J. Rossow, NASA, Report No. 1358, 489 (1958)

  • [14] A. M. Siddiqui, T. Hayat, S. Asghar, Int J. Nonlinear Mech. 34, 895 (1999) http://dx.doi.org/10.1016/S0020-7462(98)00063-8 [CrossRef]

  • [15] R. Cortell, Chem. Eng. Process. 46, 982 (2007) http://dx.doi.org/10.1016/j.cep.2006.09.008 [CrossRef]

  • [16] R. Cortell, Phys. Lett. A 357, 298 (2006) http://dx.doi.org/10.1016/j.physleta.2006.04.051 [CrossRef]

  • [17] R. Cortell, Phys. Lett. A 372, 2431 (2008) http://dx.doi.org/10.1016/j.physleta.2007.08.005 [CrossRef]

  • [18] R. Cortell, Int. J. Heat Mass Tran. 49, 1851 (2006) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.11.013 [CrossRef]

  • [19] Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Int J. Nonlinear Mech. 43, 783 (2008) http://dx.doi.org/10.1016/j.ijnonlinmec.2008.04.009 [CrossRef]

  • [20] A. K. Ghosh, P. Sana, Acta Astronaut. 64, 272 (2009) http://dx.doi.org/10.1016/j.actaastro.2008.07.016 [CrossRef]

  • [21] M. Khan, Nonlinear Anal.-Real 10, 745 (2009) http://dx.doi.org/10.1016/j.nonrwa.2007.11.001 [CrossRef]

  • [22] K. R. Rajagopal, In: A. Sequiera (Ed.), On boundary conditions for fluids of the differential type (Plenum press, New York, 1995) 273

  • [23] R. Bandelli, K. R. Rajagopal, G. P. Galdi, Arch. Mech. 47, 661 (1995)

  • [24] I. N. Sneddon, Fourier Transforms (McGraw Hill Book Company, New York, Toronto, London, 1951)

  • [25] I. N. Sneddon, Functional analysis, Encyclopedia of physics, Vol. II (Springer, Berlin, Gottingen, Heidelberg, 1955)

  • [26] I. S. Grandshteyn, I. M. Ryzhik, In: A. Jeffrey (Ed.), Tables of integrals, series and products, 5th edition (Academic Press, San Diego, New york, Bostan, London, Sydney, Toronto, 2000) (translated from Russian)

  • [27] K. Cramer, S. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists (McGraw — Hill, New York, 1973)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Haider Zaman, Arif Sohail, Azhar Ali, and Tarique Abbas
Open Journal of Modelling and Simulation, 2014, Volume 02, Number 02, Page 23
[2]
Haider Zaman, Tarique Abbas, Arif Sohail, and Azhar Ali
Journal of Applied Mathematics and Physics, 2014, Volume 02, Number 04, Page 1
[3]
Haider Zaman, Arif Sohail, and Ubaidullah  
Open Journal of Applied Sciences, 2014, Volume 04, Number 03, Page 85
[4]
Haider Zaman, Murad Ali Shah, Farhan Khan, and Qaiser Javed
American Journal of Computational Mathematics, 2014, Volume 04, Number 03, Page 143
[5]
T. Haroon, A.M. Siddiqui, and M. Zeb
Canadian Journal of Physics, 2015, Page 1
[6]
H. Zaman, Z. Ahmad, and M. Ayub
ISRN Mathematical Physics, 2013, Volume 2013, Page 1
[7]
[8]
Wenhua Hai, Zejun Li, and Kewen Xiao
Open Physics, 2011, Volume 9, Number 6

Comments (0)

Please log in or register to comment.