Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2016 (Open Physics): 0.745
IMPACT FACTOR 2016 (Central European Journal of Physics): 0.765

CiteScore 2016: 0.82

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 9, Issue 3 (Jun 2011)

Issues

Analytical solution of equations describing slow axonal transport based on the stop-and-go hypothesis

Andrey Kuznetsov
  • Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC, 27695-7910, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-02-26 | DOI: https://doi.org/10.2478/s11534-010-0066-0

Abstract

This paper presents an analytical solution for slow axonal transport in an axon. The governing equations for slow axonal transport are based on the stop-and-go hypothesis which assumes that organelles alternate between short periods of rapid movement on microtubules (MTs), short on-track pauses, and prolonged off-track pauses, when they temporarily disengage from MTs. The model includes six kinetic states for organelles: two for off-track organelles (anterograde and retrograde), two for running organelles, and two for pausing organelles. An analytical solution is obtained for a steady-state situation. To obtain the analytical solution, the governing equations are uncoupled by using a perturbation method. The solution is validated by comparing it with a high-accuracy numerical solution. Results are presented for neurofilaments (NFs), which are characterized by small diffusivity, and for tubulin oligomers, which are characterized by large diffusivity. The difference in transport modes between these two types of organelles in a short axon is discussed. A comparison between zero-order and first-order approximations makes it possible to obtain a physical insight into the effects of organelle reversals (when organelles change the type of a molecular motor they are attached to, an anterograde versus retrograde motor).

Keywords: molecular motors; neurons; axons; slow axonal transport; stop-and-go hypothesis; analytical solution

  • [1] J.E. Duncan, L.S.B. Goldstein, Plos Genet. 2, 1275 (2006) http://dx.doi.org/10.1371/journal.pgen.0020124CrossrefGoogle Scholar

  • [2] R.V. Barkus et al., Mol. Biol. Cell 19, 274 (2008) http://dx.doi.org/10.1091/mbc.E07-03-0261CrossrefGoogle Scholar

  • [3] L.S.B. Goldstein, Z.H. Yang, Annu. Rev. Neurosci. 23, 39 (2000) http://dx.doi.org/10.1146/annurev.neuro.23.1.39CrossrefGoogle Scholar

  • [4] J.V. Shah, D.W. Cleveland, Curr. Opin. Cell Biol. 14, 58 (2002) http://dx.doi.org/10.1016/S0955-0674(01)00294-0CrossrefGoogle Scholar

  • [5] S. Roy et al., J. Neurosci. 27, 3131 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4999-06.2007CrossrefGoogle Scholar

  • [6] S. Roy et al., J. Neurosci. 20, 6849 (2000) Google Scholar

  • [7] L. Wang et al., Nat. Cell Biol. 2, 137 (2000) http://dx.doi.org/10.1038/35004008CrossrefGoogle Scholar

  • [8] C.H. Xia et al., J. Cell Biol. 161, 55 (2003) http://dx.doi.org/10.1083/jcb.200301026CrossrefGoogle Scholar

  • [9] A. Brown, L. Wang, P. Jung, Mol. Biol. Cell 16, 4243 (2005) http://dx.doi.org/10.1091/mbc.E05-02-0141CrossrefGoogle Scholar

  • [10] -G. Craciun, A. Brown, A. Friedman, J. Theor. Biol. 237, 316 (2005) http://dx.doi.org/10.1016/j.jtbi.2005.04.018CrossrefGoogle Scholar

  • [11] -N. Trivedi, P. Jung, A. Brown, J. Neurosci. 27, 507 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4227-06.2007CrossrefGoogle Scholar

  • [12] -X.W. Zhu, P.I. Moreira, M.A. Smith, G. Perry, Trends Mol. Med. 11, 391 (2005) http://dx.doi.org/10.1016/j.molmed.2005.07.002CrossrefGoogle Scholar

  • [13] -A.V. Kuznetsov, A.A. Avramenko, Math. Biosci. 218, 142 (2009) http://dx.doi.org/10.1016/j.mbs.2009.01.005CrossrefGoogle Scholar

  • [14] -J. Motil, M. Dubey, W.K.-H. Chan, T.B. Shea, Brain Res. 1164, 125 (2007) http://dx.doi.org/10.1016/j.brainres.2006.09.108CrossrefGoogle Scholar

  • [15] -J.P. Julien, Cell 104, 581 (2001) http://dx.doi.org/10.1016/S0092-8674(01)00244-6CrossrefGoogle Scholar

  • [16] -S. Sasaki, H. Warita, K. Abe, M. Iwata, Acta Neuropathol. 110, 48 (2005) http://dx.doi.org/10.1007/s00401-005-1021-9CrossrefGoogle Scholar

  • [17] -B.P. Graham, K. Lauchlan, D.R. Mclean, J. Comput. Neurosci. 20, 43 (2006) http://dx.doi.org/10.1007/s10827-006-5330-3CrossrefGoogle Scholar

  • [18] -D.R. McLean, B.P. Graham, P. Roy. Soc. Lond. A Mat. 460, 2437 (2004) http://dx.doi.org/10.1098/rspa.2004.1288CrossrefGoogle Scholar

  • [19] -A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Commun. Heat Mass 36, 293 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.01.005CrossrefGoogle Scholar

  • [20] -A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Com mun. Heat Mass 36, 641 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.04.002CrossrefGoogle Scholar

  • [21] -A.V. Kuznetsov, Int. Commun. Heat Mass 35, 881 (2008) http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.04.013CrossrefGoogle Scholar

  • [22] -A.V. Kuznetsov, A.A. Avramenko, P. Roy. Soc. A-Math. Phy. 464, 2867 (2008) http://dx.doi.org/10.1098/rspa.2008.0127CrossrefGoogle Scholar

  • [23] -A.V. Kuznetsov, Cent. Eur. J. Phys., DOI: 10.2478/s11534-010-0032-x CrossrefGoogle Scholar

  • [24] -P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) http://dx.doi.org/10.1088/1478-3975/6/4/046002CrossrefGoogle Scholar

  • [25] -K.E. Miller, S.R. Heidemann, Exp. Cell Res. 314, 1981 (2008) http://dx.doi.org/10.1016/j.yexcr.2008.03.004CrossrefGoogle Scholar

  • [26] -M.V. Rao et al., J. Cell Biol. 159, 279 (2002) http://dx.doi.org/10.1083/jcb.200205062CrossrefGoogle Scholar

  • [27] -A. Friedman, B. Hu, Arch. Ration. Mech. An. 186, 251 (2007) http://dx.doi.org/10.1007/s00205-007-0069-1CrossrefGoogle Scholar

  • [28] -G.T. Shubeita et al., Cell 135, 1098 (2008) http://dx.doi.org/10.1016/j.cell.2008.10.021CrossrefGoogle Scholar

  • [29] -J.A. Galbraith, T.S. Reese, M.L. Schlief, P.E. Gallant, P. Natl. Acad. Sci. USA 96, 11589 (1999) http://dx.doi.org/10.1073/pnas.96.20.11589CrossrefGoogle Scholar

  • [30] -D.A. Smith, R.M. Simmons, Biophys. J. 80, 45 (2001) http://dx.doi.org/10.1016/S0006-3495(01)75994-2CrossrefGoogle Scholar

About the article

Published Online: 2011-02-26

Published in Print: 2011-06-01


Citation Information: Open Physics, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-010-0066-0.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
A. V. Kuznetsov
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, Volume 468, Number 2147, Page 3384
[3]
Andrey Kuznetsov
Open Physics, 2012, Volume 10, Number 4
[4]
A.V. Kuznetsov
Computer Methods in Biomechanics and Biomedical Engineering, 2013, Volume 16, Number 11, Page 1232

Comments (0)

Please log in or register to comment.
Log in