Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
See all formats and pricing
More options …
Volume 9, Issue 4


Volume 13 (2015)

Modeling of flow and mass transport in granular porous media

Frank Coutelieris
  • Department of Environmental and Natural Resources Management, University of Ioannina, Seferi 2, 30100, Agrinio, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-04-30 | DOI: https://doi.org/10.2478/s11534-010-0111-z


The scope of this work is to estimate the effective mass-transfer coefficient in a two-phase system of oil and water fluid droplets, both being in a porous medium. To this end, a tracer is advected from the flowing aqueous phase to the immobile non-aqueous one. Partitioning at the fluid-fluid interface and surface diffusion are also taken into account. By using spatial/volume-averaging techniques, the appropriately simplified boundary-value problems are described and numerically solved for the flow velocity field and for the transport problem. The problem was found to be controlled by the Peclet number of the flowing phase, the dimensionless parameter Λ, containing both diffusion and partition in the two phases, as well as the geometrical properties of the porous structure. It is also verified that the usually involved unit cell-configurations underestimate the mass transport to the immobile phase.

Keywords: convection; diffusion; mass transfer; multiphase flow; porous media

  • [1] M. Quintard, S. Whitaker, Adv. Water Resour. 17, 221 (1994) http://dx.doi.org/10.1016/0309-1708(94)90002-7CrossrefGoogle Scholar

  • [2] R.G. Carbonell, S. Whitaker, In: J. Bear, M.Y. Carpacioglu (Eds.), Fundamentals of Transport Phenomena in Porous Media (Martinus Nijhof Publ., Dordrecht, Netherlands, 1984) 121 Google Scholar

  • [3] F. Zanotti, R.G. Carbonell, Chem. Eng. Sci. 39, 263 (1984) http://dx.doi.org/10.1016/0009-2509(84)80026-3CrossrefGoogle Scholar

  • [4] F. Zanotti, R.G. Carbonell, Chem. Eng. Sci. 39, 279 (1984) http://dx.doi.org/10.1016/0009-2509(84)80027-5CrossrefGoogle Scholar

  • [5] S. Whitaker, AIChE J. 13, 420 (1967) http://dx.doi.org/10.1002/aic.690130308CrossrefGoogle Scholar

  • [6] M. Quintard, S. Whitaker, Advances in Heat Transfer 23, 369 (1993) http://dx.doi.org/10.1016/S0065-2717(08)70009-1CrossrefGoogle Scholar

  • [7] M. Quintard, S. Whitaker, Chem. Eng. Sci. 48, 2537 (1993) http://dx.doi.org/10.1016/0009-2509(93)80266-SCrossrefGoogle Scholar

  • [8] A.C. Lam, R.S. Schechter, W.H. Wade, Soc. Petrol. Eng. J. 23, 781 (1983) Google Scholar

  • [9] H. Gvirtzam, N. Paldor, M. Magaritz, Y. Bachmat, Water Resour. Res. 24, 1638 (1988) http://dx.doi.org/10.1029/WR024i010p01638CrossrefGoogle Scholar

  • [10] A. Ahmadi, M. Quintard, S. Whitaker, Adv. Water Resour. 22, 59 (1998) http://dx.doi.org/10.1016/S0309-1708(97)00032-8CrossrefGoogle Scholar

  • [11] J.-P. Gwo, R. O’Brien, P.M. Jardine, J. Hydrol. 208, 204 (1998) http://dx.doi.org/10.1016/S0022-1694(98)00161-9CrossrefGoogle Scholar

  • [12] T. Vogel, H. Gerke, R. Zhang, M.V. Genuchten, J. Hydrol. 238, 78 (2000) http://dx.doi.org/10.1016/S0022-1694(00)00327-9CrossrefGoogle Scholar

  • [13] G. Dagan, S. Lessoff, Water Resour. Res. 37, 465 (2001) http://dx.doi.org/10.1029/2000WR900225CrossrefGoogle Scholar

  • [14] S. Lessoff, G. Dagan, Water Resour. Res. 37, 473 (2001) http://dx.doi.org/10.1029/2000WR900226CrossrefGoogle Scholar

  • [15] P.E. Kechagia, I.N. Tsimpanogiannis, Y.C. Yortsos, P.C. Lichtner, Chem. Eng. Sci. 57, 2565 (2002) http://dx.doi.org/10.1016/S0009-2509(02)00124-0CrossrefGoogle Scholar

  • [16] F.A. Coutelieris, M.E. Kainourgiakis, A.K. Stubos, E.S. Kikkinides, Y.C. Yortsos, Chem. Eng. Sci. 61, 4650 (2006) http://dx.doi.org/10.1016/j.ces.2006.02.037CrossrefGoogle Scholar

  • [17] P.M. Adler, C.J. Jacquin, J.A. Quiblier, Int. J. Multiphas. Flow 16, 691 (1990) http://dx.doi.org/10.1016/0301-9322(90)90025-ECrossrefGoogle Scholar

  • [18] E.S. Kikkinides, V.N. Burganos, Phys. Rev. E. 62, 6906 (2000) http://dx.doi.org/10.1103/PhysRevE.62.6906CrossrefGoogle Scholar

  • [19] L.M. Sun, M.D. Levan, Chem. Eng. Sci. 50, 163 (1995) http://dx.doi.org/10.1016/0009-2509(94)00184-SCrossrefGoogle Scholar

  • [20] W.H. Press, B.P. Flanner, S.A. Teukolsky, W.T. Vetterlling, Numerical recipes (Cambridge University Press, Cambridge, UK, 1986) Google Scholar

  • [21] A. Ahmadi, A. Aigueperse, M. Quintard, Adv. Water Resour. 24, 423 (2001) http://dx.doi.org/10.1016/S0309-1708(00)00065-8CrossrefGoogle Scholar

About the article

Published Online: 2011-04-30

Published in Print: 2011-08-01

Citation Information: Open Physics, Volume 9, Issue 4, Pages 962–968, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-010-0111-z.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Frank A. Coutelieris
Separation and Purification Technology, 2011, Volume 81, Number 3, Page 279

Comments (0)

Please log in or register to comment.
Log in