Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2017: 0.83

SCImago Journal Rank (SJR) 2017: 0.241
Source Normalized Impact per Paper (SNIP) 2017: 0.537

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 9, Issue 4

Issues

Volume 13 (2015)

Effect of cytoskeletal element degradation on merging of concentration waves in slow axonal transport

Andrey Kuznetsov
  • Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC, 27695-7910, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andriy Avramenko / Dmitry Blinov
Published Online: 2011-04-30 | DOI: https://doi.org/10.2478/s11534-010-0116-7

Abstract

The aim of this paper is to investigate, by means of a numerical simulation, the effect of the half-life of cytoskeletal elements (CEs) on superposition of several waves representing concentrations of running, pausing, and off-track anterograde and retrograde CE populations. The waves can be induced by simultaneous microinjections of radiolabeled CEs in different locations in the vicinity of a neuron body; alternatively, the waves can be induced by microinjecting CEs at the same location several times, with a time interval between the injections. Since the waves spread out as they propagate downstream, unless their amplitude decreases too fast, they eventually superimpose. As a result of superposition and merging of several waves, for the case with a large half-life of CEs, a single wave is formed. For the case with a small half-life the waves vanish before they have enough time to merge.

Keywords: molecular motors; neurons; axons; slow axonal transport; stop-and-go hypothesis; numerical modeling

  • [1] S. Sasaki, H. Warita, K. Abe, M. Iwata, Acta Neuropathol. 110, 48 (2005) http://dx.doi.org/10.1007/s00401-005-1021-9CrossrefGoogle Scholar

  • [2] J.P. Julien, Cell104, 581 (2001) http://dx.doi.org/10.1016/S0092-8674(01)00244-6CrossrefGoogle Scholar

  • [3] A. Brown, Nat. Rev. Mol. CellBiol. 1, 153 (2000) http://dx.doi.org/10.1038/35040102CrossrefGoogle Scholar

  • [4] R.B. Vallee, G.S. Bloom, Annu. Rev. Neurosci. 14, 59 (1991) http://dx.doi.org/10.1146/annurev.ne.14.030191.000423CrossrefGoogle Scholar

  • [5] S. Roy et al., J. Neurosci. 27, 3131 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4999-06.2007CrossrefGoogle Scholar

  • [6] A. Brown, L. Wang, P. Jung, Mol. Biol. Cell 16, 4243 (2005) http://dx.doi.org/10.1091/mbc.E05-02-0141CrossrefGoogle Scholar

  • [7] G. Craciun, A. Brown, A. Friedman, J. Theor. Biol. 237, 316 (2005) http://dx.doi.org/10.1016/j.jtbi.2005.04.018CrossrefGoogle Scholar

  • [8] N. Trivedi, P. Jung, A. Brown, J. Neurosci. 27, 507 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4227-06.2007CrossrefGoogle Scholar

  • [9] Y. He et al., J. CellBiol. 168, 697 (2005) http://dx.doi.org/10.1083/jcb.200407191CrossrefGoogle Scholar

  • [10] J.V. Shah, L.A. Flanagan, P.A. Janmey, J.F. Leterrier, Mol. Biol. Cell 11, 3495 (2000) PubMedGoogle Scholar

  • [11] O.I. Wagner et al., Mol. Biol. Cell 15, 5092 (2004) http://dx.doi.org/10.1091/mbc.E04-05-0401CrossrefGoogle Scholar

  • [12] J.T. Yabe, A. Pimenta, T.B. Shea, J. Cell Sci. 112, 3799 (1999) Google Scholar

  • [13] C.W. Jung et al., Mol. Brain. Res. 141, 151 (2005) http://dx.doi.org/10.1016/j.molbrainres.2005.08.009CrossrefGoogle Scholar

  • [14] J. Niclas, F. Navone, N. Hombooher, R.D. Vale, Neuron 12, 1059 (1994) http://dx.doi.org/10.1016/0896-6273(94)90314-XCrossrefGoogle Scholar

  • [15] C.H. Xia, A. Rahman, Z.H. Yang, L.S.B. Goldstein, Genomics 52, 209 (1998) http://dx.doi.org/10.1006/geno.1998.5427CrossrefGoogle Scholar

  • [16] F. Navone et al., J. Cell Biol. 117, 1263 (1992) http://dx.doi.org/10.1083/jcb.117.6.1263CrossrefGoogle Scholar

  • [17] A. Uchida, N.H. Alami, A. Brown, Mol. Biol. Cell 20, 4997 (2009) http://dx.doi.org/10.1091/mbc.E09-04-0304CrossrefGoogle Scholar

  • [18] C.S. Mitchell, R.H. Lee, J. Theor. Biol. 257, 430 (2009) http://dx.doi.org/10.1016/j.jtbi.2008.12.011CrossrefGoogle Scholar

  • [19] P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) http://dx.doi.org/10.1088/1478-3975/6/4/046002CrossrefGoogle Scholar

  • [20] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, International Journal for Numerical Methods in Biomedical Engineering, DOI:10.1002/cnm.1417 (in press) CrossrefGoogle Scholar

  • [21] S. Millecamps et al., J. Neurosci. 27, 4947 (2007) http://dx.doi.org/10.1523/JNEUROSCI.5299-06.2007CrossrefGoogle Scholar

  • [22] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Com- mun. Heat Mass Transfer 36, 641 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.04.002CrossrefGoogle Scholar

  • [23] A. Yuan et al., J. Neurosci. 29, 11316 (2009) http://dx.doi.org/10.1523/JNEUROSCI.1942-09.2009CrossrefGoogle Scholar

  • [24] M.V. Rao et al., J. Cell Biol. 159, 279 (2002) http://dx.doi.org/10.1083/jcb.200205062CrossrefGoogle Scholar

  • [25] A. Friedman, B. Hu, Arch. Ration. Mech. Anal. 186, 251 (2007) http://dx.doi.org/10.1007/s00205-007-0069-1CrossrefGoogle Scholar

  • [26] J.A. Galbraith, T.S. Reese, M.L. Schlief, P.E. Gallant, Proc. Nat. Acad. Sci. U.S.A. 96, 11589 (1999) http://dx.doi.org/10.1073/pnas.96.20.11589CrossrefGoogle Scholar

  • [27] B.P. Graham, K. Lauchlan, D.R. Mclean, J. Comput. Neurosci. 20, 43 (2006) http://dx.doi.org/10.1007/s10827-006-5330-3CrossrefGoogle Scholar

  • [28] J. Alvarez, A. Giuditta, E. Koenig, Prog. Neurobiol. 62, 1 (2000) http://dx.doi.org/10.1016/S0301-0082(99)00062-3CrossrefGoogle Scholar

  • [29] K.E. Miller, D.C. Samuels, J. Theor. Biol. 186, 373 (1997) http://dx.doi.org/10.1006/jtbi.1996.0355CrossrefGoogle Scholar

  • [30] R.A. Nixon, K.B. Logvinenko, J. Cell Biol. 102, 647 (1986) http://dx.doi.org/10.1083/jcb.102.2.647CrossrefGoogle Scholar

About the article

Published Online: 2011-04-30

Published in Print: 2011-08-01


Citation Information: Open Physics, Volume 9, Issue 4, Pages 898–908, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-010-0116-7.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. V. Kuznetsov
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, Volume 468, Number 2147, Page 3384
[2]
Andrey Kuznetsov
Open Physics, 2012, Volume 10, Number 4
[3]
A.V. Kuznetsov
Computer Methods in Biomechanics and Biomedical Engineering, 2013, Volume 16, Number 11, Page 1232

Comments (0)

Please log in or register to comment.
Log in