Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina


IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 9, Issue 4

Issues

Volume 13 (2015)

Effective electromagnetic lagrangian at finite temperature and density in the electroweak model

Andrea Erdas
Published Online: 2011-04-30 | DOI: https://doi.org/10.2478/s11534-010-0140-7

Abstract

Using the exact propagators in a constant magnetic field, the effective electromagnetic lagrangian at finite temperature and density is calculated to all orders in the field strength B within the framework of the complete electroweak model, in the weak coupling limit. The partition function and free energy are obtained explicitly and the finite temperature effective coupling is derived in closed form. Some implications of this result, potentially interesting to astrophysics and cosmology, are discussed.

Keywords: effective electromagnetic lagrangian; electroweak model; finite temperature field theory

  • [1] R.C. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992) http://dx.doi.org/10.1086/186413CrossrefGoogle Scholar

  • [2] C. Thompson, R.C. Duncan, Mon. Not. R. Astron. Soc. 275, 255 (1995) Google Scholar

  • [3] C. Thompson, R.C. Duncan, Astrophys. J. 473, 322 (1996) http://dx.doi.org/10.1086/178147CrossrefGoogle Scholar

  • [4] A. Brandenburg, K. Enqvist, P. Olesen, Phys. Rev. D 54, 1291 (1996) http://dx.doi.org/10.1103/PhysRevD.54.1291CrossrefGoogle Scholar

  • [5] M. Joyce, M. E. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997) http://dx.doi.org/10.1103/PhysRevLett.79.1193CrossrefGoogle Scholar

  • [6] D. Grasso, H.R. Rubinstein, Phys. Rep. 348, 163 (2001) http://dx.doi.org/10.1016/S0370-1573(00)00110-1CrossrefGoogle Scholar

  • [7] W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936) http://dx.doi.org/10.1007/BF01343663CrossrefGoogle Scholar

  • [8] V. Weisskopf, In: A.I. Miller (Ed.), Early Quantum Electrodynamics (Cambridge University Press, Cambridge and NewYork, 1994) 206 Google Scholar

  • [9] R. Karplus, M. Neuman, Phys. Rev. 83, 776 (1951) http://dx.doi.org/10.1103/PhysRev.83.776CrossrefGoogle Scholar

  • [10] J. S. Schwinger, Phys. Rev. 82, 664 (1951) http://dx.doi.org/10.1103/PhysRev.82.664CrossrefGoogle Scholar

  • [11] G.V. Dunne, Eur. Phys. J. D 55, 327 (2009) http://dx.doi.org/10.1140/epjd/e2009-00022-0CrossrefGoogle Scholar

  • [12] F. Hebenstreit, R. Alkofer, G. V. Dunne, H. Gies, Phys. Rev. Lett. 102, 150404 (2009) http://dx.doi.org/10.1103/PhysRevLett.102.150404CrossrefGoogle Scholar

  • [13] W. Dittrich, H. Gies, Springer Tr. Mod. Phys. 166, 1 (2000) http://dx.doi.org/10.1007/3-540-45585-X_1CrossrefGoogle Scholar

  • [14] P. Elmfors, D. Persson, B.S. Skagerstam, Phys. Rev. Lett. 71, 480 (1993) http://dx.doi.org/10.1103/PhysRevLett.71.480CrossrefGoogle Scholar

  • [15] P. Elmfors, D. Persson, B.S. Skagerstam, Astropart. Phys. 2, 299 (1994) http://dx.doi.org/10.1016/0927-6505(94)90008-6Google Scholar

  • [16] P. Elmfors, P. Liljenberg, D. Persson, B.S. Skagerstam, Phys. Rev. D 51, 5885 (1995) http://dx.doi.org/10.1103/PhysRevD.51.5885CrossrefGoogle Scholar

  • [17] A. Chodos, D.A. Owen, C.M. Sommerfield, Phys. Lett. B 212, 491 (1988) http://dx.doi.org/10.1016/0370-2693(88)91803-5CrossrefGoogle Scholar

  • [18] S.P. Kim, H.K. Lee, Y. Yoon, Phys. Rev. D 79, 045024 (2009) http://dx.doi.org/10.1103/PhysRevD.79.045024CrossrefGoogle Scholar

  • [19] S.P. Kim, H.K. Lee, Y. Yoon, arXiv:1006. 0774[hep-th] Google Scholar

  • [20] A. Das, J. Frenkel, Phys. Rev. D 80, 125039 (2009) http://dx.doi.org/10.1103/PhysRevD.80.125039CrossrefGoogle Scholar

  • [21] A. Das, J. Frenkel, Phys. Lett. B 680, 195 (2009) http://dx.doi.org/10.1016/j.physletb.2009.08.054CrossrefGoogle Scholar

  • [22] A.K. Das, A.J. da Silva, Phys. Rev. D 59, 105011 (1999) http://dx.doi.org/10.1103/PhysRevD.59.105011CrossrefGoogle Scholar

  • [23] S.G. Maciel, S. Perez, Phys. Rev. D 78, 065005 (2008) http://dx.doi.org/10.1103/PhysRevD.78.065005CrossrefGoogle Scholar

  • [24] L.P. Teo, Phys. Lett. B 672, 190 (2009) http://dx.doi.org/10.1016/j.physletb.2009.01.013CrossrefGoogle Scholar

  • [25] S.C. Lim, L.P. Teo, Int. J. Mod. Phys. A 24, 3455 (2009) http://dx.doi.org/10.1142/S0217751X09047053CrossrefGoogle Scholar

  • [26] K.A. Milton, J. Wagner, P. Parashar, I. Brevik, Phys. Rev. D 81, 065007 (2010) http://dx.doi.org/10.1103/PhysRevD.81.065007CrossrefGoogle Scholar

  • [27] M. Frank, I. Turan, L. Ziegler, Phys. Rev. D 76, 015008 (2007) http://dx.doi.org/10.1103/PhysRevD.76.015008CrossrefGoogle Scholar

  • [28] M. Rypestol, I. Brevik, New J. Phys. 12, 013022 (2010) http://dx.doi.org/10.1088/1367-2630/12/1/013022CrossrefGoogle Scholar

  • [29] J. Cannellos, E.J. Ferrer, V. de la Incera, Phys. Lett. B 542, 123 (2002) http://dx.doi.org/10.1016/S0370-2693(02)02336-5CrossrefGoogle Scholar

  • [30] G. Piccinelli, A. Ayala, Lect. Notes Phys. 646, 293 (2004) http://dx.doi.org/10.1007/978-3-540-40918-2_11CrossrefGoogle Scholar

  • [31] A. Sanchez, A. Ayala, G. Piccinelli, Phys. Rev. D 75, 043004 (2007) http://dx.doi.org/10.1103/PhysRevD.75.043004CrossrefGoogle Scholar

  • [32] K. Kajantie, M. Laine, J. Peisa, K. Rummukainen, M. E. Shaposhnikov, Nucl. Phys. B 544, 357 (1999) http://dx.doi.org/10.1016/S0550-3213(98)00854-2CrossrefGoogle Scholar

  • [33] V. Skalozub, M. Bordag, arXiv:hep-ph/9807510 Google Scholar

  • [34] J. Navarro, A. Sanchez, M.E. Tejeda-Yeomans, A. Ayala, G. Piccinelli, arXiv:1007. 4208[hep-ph] Google Scholar

  • [35] J. Ambjorn, P. Olesen, arXiv:hep-ph/9304220 Google Scholar

  • [36] W. Dittrich, M. Reuter, Lect. NotesPhys. 220, 1 (1985) http://dx.doi.org/10.1007/3-540-15182-6_1CrossrefGoogle Scholar

  • [37] A. Das, Finite Temperature Field Theory (World Scientific, Singapore, 1997) http://dx.doi.org/10.1142/9789812819864CrossrefGoogle Scholar

  • [38] J. I. Kapusta, Finite Temperature Field Theory (Cambridge University Press, Cambridge, 1989) Google Scholar

  • [39] M. LeBellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996) http://dx.doi.org/10.1017/CBO9780511721700CrossrefGoogle Scholar

  • [40] A. Erdas, G. Feldman, Nucl. Phys. B 343, 597 (1990) http://dx.doi.org/10.1016/0550-3213(90)90582-XCrossrefGoogle Scholar

  • [41] J. Ambjorn, P. Olesen, Nucl. Phys. B 315, 606 (1989) http://dx.doi.org/10.1016/0550-3213(89)90004-7CrossrefGoogle Scholar

  • [42] J. Ambjorn, P. Olesen, Phys. Lett. B 214, 565 (1988) http://dx.doi.org/10.1016/0370-2693(88)90120-7CrossrefGoogle Scholar

  • [43] N.K. Nielsen, P. Olesen, Nucl. Phys. B 144, 376 (1978) http://dx.doi.org/10.1016/0550-3213(78)90377-2CrossrefGoogle Scholar

  • [44] A. Erdas, Phys. Rev. D 80, 113004 (2009) http://dx.doi.org/10.1103/PhysRevD.80.113004CrossrefGoogle Scholar

About the article

Published Online: 2011-04-30

Published in Print: 2011-08-01


Citation Information: Open Physics, Volume 9, Issue 4, Pages 1022–1035, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-010-0140-7.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Andrea Erdas
International Journal of Modern Physics A, 2016, Volume 31, Number 07, Page 1650018
[2]
Andrea Erdas and Kevin P. Seltzer
International Journal of Modern Physics A, 2014, Volume 29, Number 17, Page 1450091
[3]
Andrea Erdas and Kevin P. Seltzer
Physical Review D, 2013, Volume 88, Number 10

Comments (0)

Please log in or register to comment.
Log in