Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina


IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
Online
ISSN
2391-5471
Alle Formate und Preise
Weitere Optionen …
Band 9, Heft 4

Hefte

Volume 13 (2015)

Spring-block model for a single-lane highway traffic

Ferenc Járai-Szabó / Bulcsú Sándor / Zoltán Néda
Online erschienen: 30.04.2011 | DOI: https://doi.org/10.2478/s11534-011-0007-6

Abstract

A simple one-dimensional spring-block chain with asymmetric interactions is considered to model an idealized single-lane highway traffic. The main elements of the system are blocks (modeling cars), springs with unidirectional interactions (modeling distance-keeping interactions between neighbors), static and kinetic friction (modeling inertia of drivers and cars) and spatiotemporal disorder in the values of these friction forces (modeling differences in the driving attitudes). The traveling chain of cars correspond to the dragged spring-block system. Contrary to most of the studies in the field of highway traffic here we focus on a measure characteristic for one car in the row. Our statistical analysis for the spring-block chain predicts a non-trivial and rich complex behavior. As a function of the disorder level in the system a dynamic phase-transition is observed. For low disorder levels uncorrelated slidings of blocks are revealed while for high disorder levels correlated avalanches dominates.

Keywords: highway traffic; disorder induced phase transition; spring-block models

  • [1] B.D. Greenshields, Highway Research Board Proceedings 14, 448 (1935) Google Scholar

  • [2] M.J. Lighthill, G.B. Whitham, P. Roy. Soc. A-Math. Phy. 229, 317 (1955) http://dx.doi.org/10.1098/rspa.1955.0089CrossrefGoogle Scholar

  • [3] D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000) http://dx.doi.org/10.1016/S0370-1573(99)00117-9CrossrefGoogle Scholar

  • [4] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001) http://dx.doi.org/10.1103/RevModPhys.73.1067CrossrefGoogle Scholar

  • [5] S. Maerivoet, B. De Moor, Phys. Rep. 419, 1 (2005) http://dx.doi.org/10.1016/j.physrep.2005.08.005CrossrefGoogle Scholar

  • [6] S. Darbha, K.R. Rajagopal, V. Tyagi, Nonlinear Anal.-Theor. 69, 950 (2008) http://dx.doi.org/10.1016/j.na.2008.02.123CrossrefGoogle Scholar

  • [7] R. Mahnke, J. Kaupuzs, I. Lubashevsky, Phys. Rep. pringer, Berlin, 408, 1 (2005) Google Scholar

  • [8] T. Nagatani, Rep. Prog. Phys. 65, 1331 (2002) http://dx.doi.org/10.1088/0034-4885/65/9/203CrossrefGoogle Scholar

  • [9] B.S. Kerner, The physics of traffic (Spr New York, 2004) Google Scholar

  • [10] Y. Sugiyama et al., New J. Phys. 10, 033001 (2008) http://dx.doi.org/10.1088/1367-2630/10/3/033001CrossrefGoogle Scholar

  • [11] R. Burridge, L. Knopoff, B. Seismol. Soc. Am. 57, 341 (1967) Google Scholar

  • [12] B. Gutenberg, C.F. Richter, Ann. Geophys. 9, 1 (1956) Google Scholar

  • [13] J.M. Carlson, J.S. Langer, Phys. Rev. A 40, 6470 (1989) http://dx.doi.org/10.1103/PhysRevA.40.6470CrossrefGoogle Scholar

  • [14] K.-t. Leung, Z. Néda, Phys. Rev. Lett. 85, 662 (2000) http://dx.doi.org/10.1103/PhysRevLett.85.662CrossrefGoogle Scholar

  • [15] K.-t. Leung, L. Jozsa, M. Ravasz, Z. Néda, Nature 410, 166 (2001) http://dx.doi.org/10.1038/35065517CrossrefGoogle Scholar

  • [16] F. Járai-Szabó, S. Astilean, Z. Néda, Chem. Phys. Lett. 408, 241 (2005) http://dx.doi.org/10.1016/j.cplett.2005.04.051CrossrefGoogle Scholar

  • [17] F. Járai-Szabó et al., J. Optoelectron. Adv. M. 8, 1083 (2006) Google Scholar

  • [18] F. Járai-Szabó, Z. Néda, S. Astilean, C. Farcau, A. Kuttesch, Eur. Phys. J. E 23, 153 (2007) http://dx.doi.org/10.1140/epje/i2006-10194-9CrossrefGoogle Scholar

  • [19] K. Kovács, Z. Néda, Phys. Lett. A 361, 18 (2007) http://dx.doi.org/10.1016/j.physleta.2006.08.086CrossrefGoogle Scholar

  • [20] E.-A. Horváth, F. Járai-Szabó, Z. Néda, J. Optoelectron. Adv. M. 10, 2433 (2008) Google Scholar

Artikelinformationen

Online erschienen: 30.04.2011

Erschienen im Druck: 01.08.2011


Quellenangabe: Open Physics, Band 9, Heft 4, Seiten 1002–1009, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-011-0007-6.

Zitat exportieren

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[1]
Dianhai Wang, Xiaolong Ma, Dongfang Ma, and Sheng Jin
IEEE Transactions on Intelligent Transportation Systems, 2017, Jahrgang 18, Nummer 5, Seite 1179
[2]
Nicolae Bîrlea
Open Engineering, 2014, Jahrgang 4, Nummer 2
[3]
Bulcsú Sándor, Ferenc Járai-Szabó, Tamás Tél, and Zoltán Néda
Physical Review E, 2013, Jahrgang 87, Nummer 4
[4]
Ferenc Járai-Szabó and Zoltán Néda
Physica A: Statistical Mechanics and its Applications, 2012, Jahrgang 391, Nummer 22, Seite 5727
[5]
Emőke-Ágnes Horvát, Ferenc Járai-Szabó, Yves Brechet, and Zoltán Néda
Open Physics, 2012, Jahrgang 10, Nummer 4

Kommentare (0)