Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
See all formats and pricing
More options …
Volume 9, Issue 4


Volume 13 (2015)

Luminescence of silicon Dioxide — silica glass, α-quartz and stishovite

Anatoly Trukhin
  • Institute of Solid State Physics, University of Latvia, LV-1063, Riga, Latvia
  • Institute of Solid State Physics, University of Latvia, Kengaraga street, 8, LV-1063, Riga, Latvia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krishjanis Smits / Georg Chikvaidze / Tatiana Dyuzheva / Ludmila Lityagina
Published Online: 2011-04-30 | DOI: https://doi.org/10.2478/s11534-011-0016-5


This paper compares the luminescence of different modifications of silicon dioxide — silica glass, α-quartz crystal and dense octahedron structured stishovite crystal. Under x-ray irradiation of pure silica glass and pure α-quartz crystal, only the luminescence of self-trapped exciton (STE) is detected, excitable only in the range of intrinsic absorption. No STE luminescence was detected in stishovite since, even though its luminescence is excitable below the optical gap, it could not be ascribed to a self-trapped exciton. Under ArF laser excitation of pure α-quartz crystal, luminescence of a self-trapped exciton was detected under two-photon excitation. In silica glass and stishovite mono crystal, we spectrally detected mutually similar luminescences under single-photon excitation of ArF laser. In silica glass, the luminescence of an oxygen deficient center is presented by the so-called twofold coordinated silicon center (L.N. Skuja et al., Solid State Commun. 50, 1069 (1984)). This center is modified with an unknown surrounding or localized states of silica glass (A.N. Trukhin et al., J. Non-Cryst. Solids 248, 40 (1999)). In stishovite, that same luminescence was ascribed to some defect existing after crystal growth. For α-quartz crystal, similar to silica and stishovite, luminescence could be obtained only by irradiation with a lattice damaging source such as a dense electron beam at a temperature below 80 K, as well as by neutron or -irradiation at 290 K.

In spite of a similarity in the luminescence of these three materials (silica glass, stishovite mono crystal and irradiated α-quartz crystal), there are differences that can be explained by the specific characteristics of these materials. In particular, the nature of luminescence excited in the transparency range of stishovite is ascribed to a defect existing in the crystal after-growth. A similarity between stishovite luminescence and that of oxygen-deficient silica glass and radiation induced luminescence of α-quartz crystal presumes a similar nature of the centers in those materials.

Keywords: stishovite; quartz; silica glass; luminescence; point defects

  • [1] A.N. Trukhin, J.L. Jansons, T.I. Dyuzheva, L.M. Lityagina, N.A. Bendeliani, Solid State Commun. 127, 415 (2003) http://dx.doi.org/10.1016/S0038-1098(03)00456-3CrossrefGoogle Scholar

  • [2] A. Paleari, N. Chiodini, D. Di Martino, F. Meinardi, P. Fumagalli, Phys. Rev. B 68, 184107 (2003) http://dx.doi.org/10.1103/PhysRevB.68.184107CrossrefGoogle Scholar

  • [3] A.N. Trukhin, J.L. Jansons, T.I. Dyuzheva, L.M. Lityagina, N.A. Bendeliani, Solid State Commun. 131, 1 (2004) http://dx.doi.org/10.1016/j.ssc.2004.04.027CrossrefGoogle Scholar

  • [4] A. Trukhin et al., Phys. Status Solidi C 2, 584 (2005) http://dx.doi.org/10.1002/pssc.200460240CrossrefGoogle Scholar

  • [5] A.N. Trukhin, T.I. Dyuzheva, L.M. Lityagina, N.A. Bendeliani, J. Phys.-Condens. Mat. 20, 175206 (2008) http://dx.doi.org/10.1088/0953-8984/20/17/175206CrossrefGoogle Scholar

  • [6] K.D. Litasov et al., Earth Planet. Sc. Lett. 262, 620 (2007) http://dx.doi.org/10.1016/j.epsl.2007.08.015CrossrefGoogle Scholar

  • [7] A.N. Trukhin, J. Non-Cryst. Solids 355, 1013 (2009) http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.040CrossrefGoogle Scholar

  • [8] C.M. Gee, M. Kastner, J. Non-Cryst. Solids 40, 577 (1980) http://dx.doi.org/10.1016/0022-3093(80)90131-3CrossrefGoogle Scholar

  • [9] M. Cannas, S. Agnello, R. Boscaino, F.M. Gelardi, A. Trukhin, Radiat. Meas. 38, 507 (2004) http://dx.doi.org/10.1016/j.radmeas.2003.12.008CrossrefGoogle Scholar

  • [10] M. Cannas, S. Agnello, R. Boscaino, F.M. Gelardi, A. Trukhin, Phys. Status Solidi C 4, 968 (2007) http://dx.doi.org/10.1002/pssc.200673793CrossrefGoogle Scholar

  • [11] M. Cannas et al., J. Phys.-Condens. Mat. 16, 7931 (2004) http://dx.doi.org/10.1088/0953-8984/16/45/015CrossrefGoogle Scholar

  • [12] A. Trukhin, P. Liblik, C. Lushchik, J. Jansons, J. Lumin. 109, 103 (2004) http://dx.doi.org/10.1016/j.jlumin.2004.01.087CrossrefGoogle Scholar

  • [13] L.N. Skuja, A.N. Streletsky, A.B. Pakovich, Solid StateCommun. 50, 1069 (1984) http://dx.doi.org/10.1016/0038-1098(84)90290-4CrossrefGoogle Scholar

  • [14] A. Truhins, L. Skuja, A. Boganovs, V. Rudenko, J. Non-Cryst. Solids 149, 96 (1992) http://dx.doi.org/10.1016/0022-3093(92)90057-QCrossrefGoogle Scholar

  • [15] A.N. Trukhin, H-J. Fitting, J. Non-Cryst. Solids 248, 49 (1999) http://dx.doi.org/10.1016/S0022-3093(99)00089-7CrossrefGoogle Scholar

  • [16] A.N. Trukhin, In: G. Pacchioni, L. Skuja, D. L. Griscom (Eds.), Defects in SiO2 and RelatedDielectrics: Science and Technology (Kluwer Academic, London, 2000) 235 http://dx.doi.org/10.1007/978-94-010-0944-7_8CrossrefGoogle Scholar

  • [17] A.N. Trukhin, J. Troks, D.L. Griscom, J. Non-Cryst. Solids 353, 1560 (2007) http://dx.doi.org/10.1016/j.jnoncrysol.2007.01.028CrossrefGoogle Scholar

  • [18] L.M. Lityagina, T.I. Dyuzheva, N.A. Nikolaev, N.A. Bendeliani, J. Cryst. Growth 222, 627 (2001) http://dx.doi.org/10.1016/S0022-0248(00)00978-7CrossrefGoogle Scholar

  • [19] T.I. Dyuzheva, L.M. Lityagina, N.A. Bendeliani, N.A. Nikolaev, Kristallografiya 43, 554 (1998) (in Russian) Google Scholar

  • [20] A. Trukhin, A. Plaudis, Sov. Phys.-Sol. State 21, 644 (1979) Google Scholar

  • [21] A.N. Truhins, M. Kink, J. Maksimov, R. Kink, Solid StateCommun. 127, 655 (2003) Google Scholar

  • [22] A.N. Trukhin, J. Teteris, A. Fedotov, D.L. Griscom, G. Buscarino, J. Non-Cryst. Solids 355, 1066 (2009) http://dx.doi.org/10.1016/j.jnoncrysol.2008.11.037CrossrefGoogle Scholar

  • [23] A.N. Trukhin, A. Sharakovski, J. Grube, D.L. Griscom, J. Non-Cryst. Solids 356, 982 (2010) http://dx.doi.org/10.1016/j.jnoncrysol.2010.01.027CrossrefGoogle Scholar

  • [24] D. Curie, Luminescence in Crystals (Wiley, NewYork, 1963) Google Scholar

  • [25] I.A.A. Terra, A.S.S. de Camargo, M.C. Terrile, L.A. Nunes, J. Lumin. 128, 891 (2008) http://dx.doi.org/10.1016/j.jlumin.2007.11.028CrossrefGoogle Scholar

About the article

Published Online: 2011-04-30

Published in Print: 2011-08-01

Citation Information: Open Physics, Volume 9, Issue 4, Pages 1106–1113, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-011-0016-5.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mike Broxtermann, Tobias Dierkes, Lena Marie Funke, Manfred Salvermoser, Michael Laube, Steffen Natemeyer, Norbert Braun, Michael Ryan Hansen, and Thomas Jüstel
Journal of Luminescence, 2018

Comments (0)

Please log in or register to comment.
Log in