[1] P. Appell, J. Kampé de Fériét, Fonctions Hypergéometriqués Polynôme d’Hermite, (Gauthier-Villars, Paris, 1926) Google Scholar

[2] G. Dattoli, Appl. Math. Comput. 141, 151 (2003) http://dx.doi.org/10.1016/S0096-3003(02)00329-6CrossrefGoogle Scholar

[3] G. Dattoli, J. Math. Anal. Appl. 284, 447 (2003) http://dx.doi.org/10.1016/S0022-247X(03)00259-2CrossrefGoogle Scholar

[4] K. B. Wolf, Integral Transforms in Science and Engineering, (Plenum Press, New York, 1979) Google Scholar

[5] A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson, A. J. Solomon, arXiv:quant-ph/0409152v1 Google Scholar

[6] G. Dattoli, E. Sabia, arXiv:1010.1679v1 Web of ScienceGoogle Scholar

[7] O. Vallée, M. Soares, Airy Functions and application to Physics, (World Scientific, London, 2004) Google Scholar

[8] D. V. Widder, Am. Math. Mon. 86, 271 (1979) http://dx.doi.org/10.2307/2320744CrossrefGoogle Scholar

[9] M. Feng, Phys. Rev. A 64, 034101 (2001) http://dx.doi.org/10.1103/PhysRevA.64.034101CrossrefGoogle Scholar

[10] C. Lin, T. Hsiung, M. Huang, Europhys. Lett. 83, 30002 (2008) http://dx.doi.org/10.1209/0295-5075/83/30002CrossrefGoogle Scholar

[11] M. V. Berry, N. J. Balazs, Am. J. Phys. 47, 264 (1979) http://dx.doi.org/10.1119/1.11855CrossrefGoogle Scholar

[12] J. N. Watson, A treatise on the theory of Bessel Functions, (Cambridge University Press, London 1966) Google Scholar

[13] T. Haimo, C. Market, J. Math. Anal. Appl. 168, 89 (1992) http://dx.doi.org/10.1016/0022-247X(92)90191-FCrossrefGoogle Scholar

[14] G. Dattoli, B. Germano, P. E. Ricci, Appl. Math. Comput. 154, 219 (2004) http://dx.doi.org/10.1016/S0096-3003(03)00705-7CrossrefGoogle Scholar

[15] J. Lekner, Eur. J. Phys. 30, L43 (2009) http://dx.doi.org/10.1088/0143-0807/30/3/L04CrossrefGoogle Scholar

[16] G. Dattoli, K. Zhukovsky, arXiv:math-ph/1010.1678v1 Google Scholar

## Comments (0)