Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2017: 0.83

SCImago Journal Rank (SJR) 2017: 0.241
Source Normalized Impact per Paper (SNIP) 2017: 0.537

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 11, Issue 1

Issues

Volume 13 (2015)

Notes on entropic characteristics of quantum channels

Alexey Rastegin
Published Online: 2013-01-15 | DOI: https://doi.org/10.2478/s11534-012-0134-8

Abstract

One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss a few channel characteristics expressed by means of generalized entropies. Such characteristics can often be treated in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the q-average output entropy of degree q ≥ 1 is bounded from above by the q-entropy of the input density matrix. The concavity properties of the (q, s)-entropy exchange are considered. Fano type quantum bounds on the (q, s)-entropy exchange are derived. We also give upper bounds on the map (q, s)-entropies in terms of the output entropy, corresponding to the completely mixed input.

Keywords: entropy exchange; map entropy; quantum Fano inequality; Minkowski inequality

  • [1] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Google Scholar

  • [2] I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006) http://dx.doi.org/10.1017/CBO9780511535048CrossrefGoogle Scholar

  • [3] A. Rényi, In: J. Neyman (Ed.), Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. I (University of California Press, Berkeley, 1961) 547 Google Scholar

  • [4] C. Tsallis, J. Stat. Phys. 52, 479 (1988) http://dx.doi.org/10.1007/BF01016429CrossrefGoogle Scholar

  • [5] X. Hu, Z. Ye, J. Math. Phys. 47, 023502 (2006) http://dx.doi.org/10.1063/1.2165794CrossrefGoogle Scholar

  • [6] A.E. Rastegin, J. Stat. Phys. 143, 1120 (2011) http://dx.doi.org/10.1007/s10955-011-0231-xCrossrefGoogle Scholar

  • [7] B. Schumacher, Phys. Rev. A 54, 2614 (1996) http://dx.doi.org/10.1103/PhysRevA.54.2614CrossrefGoogle Scholar

  • [8] K. Zyczkowski, I. Bengtsson, Open Sys. Inf. Dyn. 11, 3 (2004) http://dx.doi.org/10.1023/B:OPSY.0000024753.05661.c2CrossrefGoogle Scholar

  • [9] W. Roga, Z. Puchała, Ł. Rudnicki, K. Zyczkowski, arXiv:1206.2536 [quant-ph] Google Scholar

  • [10] S. Wehner, A. Winter, New J. Phys. 12, 025009 (2010) http://dx.doi.org/10.1088/1367-2630/12/2/025009CrossrefGoogle Scholar

  • [11] I. Bialynicki-Birula, Ł. Rudnicki, Entropic Uncertainty Relations in Quantum Physics, In: K. D. Sen (Ed.), Statistical Complexity, 1 (Springer, Berlin, 2011) 10.1007/978-90-481-3890-6-1 http://dx.doi.org/10.1007/978-90-481-3890-6_1Google Scholar

  • [12] W. Roga, M. Fannes, K. Zyczkowski, Int. J. Quant. Inf. 9, 1031 (2011) http://dx.doi.org/10.1142/S0219749911007794CrossrefGoogle Scholar

  • [13] P.W. Shor, Commun. Math. Phys. 246, 453 (2004) http://dx.doi.org/10.1007/s00220-003-0981-7CrossrefGoogle Scholar

  • [14] F.G.S.L. Brandão, M. Horodecki, Open Sys. Inf. Dyn. 17, 31 (2010) http://dx.doi.org/10.1142/S1230161210000047CrossrefGoogle Scholar

  • [15] A.E. Rastegin, J. Phys. A: Math. Theor. 45, 045302 (2012) http://dx.doi.org/10.1088/1751-8113/45/4/045302CrossrefGoogle Scholar

  • [16] G. Lindblad, In: C. Bendjaballah, O. Hirota, S. Reynaud (Eds.), Lect. Notes Phys. 378, 71 (1991) Google Scholar

  • [17] J. Havrda, F. Charvát, Kybernetika 3, 30 (1967) Google Scholar

  • [18] E.M.F. Curado, C. Tsallis, J. Phys. A: Math. Gen. 24, L69 (1991) http://dx.doi.org/10.1088/0305-4470/24/2/004CrossrefGoogle Scholar

  • [19] V. Majerník, E. Majerníková, S. Shpyrko, Cent. Eur. J. Phys. 3, 393 (2003) http://dx.doi.org/10.2478/BF02475852CrossrefGoogle Scholar

  • [20] S. Wehner, A. Winter, J. Math. Phys. 49, 062105 (2008) http://dx.doi.org/10.1063/1.2943685CrossrefGoogle Scholar

  • [21] A.E. Rastegin, J. Phys. A: Math. Theor. 43, 155302 (2010) http://dx.doi.org/10.1088/1751-8113/43/15/155302CrossrefGoogle Scholar

  • [22] A.E. Rastegin, J. Phys. A: Math. Theor. 44, 095303 (2011) http://dx.doi.org/10.1088/1751-8113/44/9/095303CrossrefGoogle Scholar

  • [23] A.E. Rastegin, Phys. Scr. 84, 057001 (2011) http://dx.doi.org/10.1088/0031-8949/84/05/057001CrossrefGoogle Scholar

  • [24] A.E. Rastegin, Int. J. Theor. Phys. 51, 1300 (2012) http://dx.doi.org/10.1007/s10773-011-1006-5CrossrefGoogle Scholar

  • [25] G. Wilk, Z. WŁodarczyk, Cent. Eur. J. Phys. 10, 568 (2012) http://dx.doi.org/10.2478/s11534-011-0111-7CrossrefGoogle Scholar

  • [26] G.A. Raggio, J. Math. Phys. 36, 4785 (1995) http://dx.doi.org/10.1063/1.530920CrossrefGoogle Scholar

  • [27] J. Watrous, Theory of Quantum Information (Lecture notes for CS 798, University of Waterloo, 2008) Google Scholar

  • [28] A. JamioŁkowski, Rep. Math. Phys. 3, 275 (1972) http://dx.doi.org/10.1016/0034-4877(72)90011-0CrossrefGoogle Scholar

  • [29] M.-D. Choi, Linear Algebra Appl. 10, 285 (1975) http://dx.doi.org/10.1016/0024-3795(75)90075-0CrossrefGoogle Scholar

  • [30] J.A. Miszczak, Int. J. Mod. Phys. C 22, 897 (2011) http://dx.doi.org/10.1142/S0129183111016683CrossrefGoogle Scholar

  • [31] W. Roga, M. Fannes, K. Zyczkowski, Phys. Rev. Lett. 105, 040505 (2011) http://dx.doi.org/10.1103/PhysRevLett.105.040505CrossrefGoogle Scholar

  • [32] A.E. Rastegin, Quantum Inf. Process., DOI:10.1007/s11128-011-0347-6 CrossrefGoogle Scholar

  • [33] K. Audenaert, J. Math. Phys. 48, 083507 (2007) http://dx.doi.org/10.1063/1.2771542CrossrefGoogle Scholar

  • [34] S. Furuichi, J. Math. Phys. 47, 023302 (2006) http://dx.doi.org/10.1063/1.2165744CrossrefGoogle Scholar

  • [35] J. Preskill, Quantum Computation and Information (Lecture notes for Physics 229, California Institute of Technology, 1998) Google Scholar

  • [36] E.A. Carlen, Trace Inequalities and Quantum Entropy: An Introductory Course (Lecture course given at “Entropy and the Quantum”, Tucson, Arizona, 2009) Google Scholar

  • [37] J.-C. Bourin, F. Hiai, Int. J. Math. 22, 1121 (2011) http://dx.doi.org/10.1142/S0129167X1100715XCrossrefGoogle Scholar

  • [38] A.E. Rastegin, J. Stat. Phys. 148, 1040 (2012) http://dx.doi.org/10.1007/s10955-012-0569-8CrossrefGoogle Scholar

  • [39] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities (Cambridge University Press, London, 1934) Google Scholar

  • [40] K. Fan, Proc. Nat. Acad. Sci. USA 35, 652 (1949) http://dx.doi.org/10.1073/pnas.35.11.652CrossrefGoogle Scholar

  • [41] R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985) Google Scholar

About the article

Published Online: 2013-01-15

Published in Print: 2013-01-01


Citation Information: Open Physics, Volume 11, Issue 1, Pages 69–77, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-012-0134-8.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alexey E. Rastegin
Reports on Mathematical Physics, 2014, Volume 73, Number 3, Page 393
[2]
Alexey E Rastegin
Journal of Statistical Mechanics: Theory and Experiment, 2013, Volume 2013, Number 06, Page P06016
[3]
Alexey E Rastegin
Journal of Physics A: Mathematical and Theoretical, 2013, Volume 46, Number 28, Page 285301
[4]
Wojciech Roga, Zbigniew Puchała, Łukasz Rudnicki, and Karol Życzkowski
Physical Review A, 2013, Volume 87, Number 3

Comments (0)

Please log in or register to comment.
Log in