Jump to ContentJump to Main Navigation
Show Summary Details

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2015: 0.948
5-year IMPACT FACTOR: 0.977

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142
Impact per Publication (IPP) 2015: 1.222

Open Access
Online
ISSN
2391-5471
See all formats and pricing
Volume 11, Issue 10 (Oct 2013)

Issues

Numerical solution of fractional differential equations by using fractional B-spline

Hossein Jafari
  • International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, P. Bag X2046, Mmabatho, 2735, South Africa
  • Department of Mathematics, University of Mazandaran, 47416-95447, Babolsar, Iran
  • Email:
/ Chaudry Khalique
  • International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, P. Bag X2046, Mmabatho, 2735, South Africa
  • Email:
/ Mohammad Ramezani
  • Department of Mathematics, Imam Khomeini International, Qazvin, Iran
  • Email:
/ Haleh Tajadodi
  • Department of Mathematics, University of Mazandaran, 47416-95447, Babolsar, Iran
  • Email:
Published Online: 2013-12-19 | DOI: https://doi.org/10.2478/s11534-013-0222-4

Abstract

In this paper, we present fractional B-spline collocation method for the numerical solution of fractional differential equations. We consider this method for solving linear fractional differential equations which involve Caputo-type fractional derivatives. The numerical results demonstrate that the method is efficient and quite accurate and it requires relatively less computational work. For this reason one can conclude that this method has advantage on other methods and hence demonstrates the importance of this work.

Keywords: fractional B-spline; fractional differential equations; collocation method; Caputo derivative

  • [1] M. Caputo, J. Roy. Austral. Soc. 13, 529 (1967) http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x [Crossref]

  • [2] J. G. Lu, G. Chen, Chaos Soliton. Fract. 27, 685 (2006) http://dx.doi.org/10.1016/j.chaos.2005.04.037 [Crossref]

  • [3] R. L. Bagley, P.J. Torvik, AIAA J. 21, 741 (1983) http://dx.doi.org/10.2514/3.8142 [Crossref]

  • [4] L. Gaul, P. Klein, S. Kempfle, Mech. Res. Commun. 16, 297 (1989) http://dx.doi.org/10.1016/0093-6413(89)90067-0 [Crossref]

  • [5] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos (World Scientific, Boston, 2012)

  • [6] K. B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York and London, 1974)

  • [7] V. Daftardar-Gejji, H. Jafari, J. Math. Anal. Appl. 189, 541 (2007)

  • [8] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (CRC Press, Boca Raton, Chapman & Hall, 2003) http://dx.doi.org/10.1201/9780203491164 [Crossref]

  • [9] H. Jafari, S. Das, H. Tajadodi, Journal of King Saud University-Science 23, 151 (2011) http://dx.doi.org/10.1016/j.jksus.2010.06.023 [Crossref]

  • [10] H. Jafari, N. Kadkhoda, H. Tajadodi, S.A. Hosseini-Matikolai, Int. J. Nonlin. Sci. Num. 11, 271 (2010)

  • [11] H. Jafari, Sh. Momani, Phys. Lett. A 370, 388 (2007) http://dx.doi.org/10.1016/j.physleta.2007.05.118 [Crossref]

  • [12] H. Jafari, H. Tajadodi, D. Baleanu, Fract. Calc. Appl. Anal. 16, 109 (2013).

  • [13] H. Jafari, H. Tajadodi, Int. J. Diff. Eqn. 2010, 764738 (2010)

  • [14] G. C. Wu, E.W.M. Lee, Phys. Lett. A 374, 2506 (2010) http://dx.doi.org/10.1016/j.physleta.2010.04.034 [Crossref]

  • [15] G. C. Wu, Therm. Sci. 16, 1257 (2012) http://dx.doi.org/10.2298/TSCI1204257W [Crossref]

  • [16] G. C. Wu, Int. Rev. Chem. Eng. 4, 505 (2012)

  • [17] G. C. Wu, D. Baleanu, Adv. Difference Equ. 2013, 18 (2013) http://dx.doi.org/10.1186/1687-1847-2013-18 [Crossref]

  • [18] H. Jafari, S.A. Yousefi, M.A. Firoozjaee, Commun. Frac. Calc. 2, 9 (2011)

  • [19] W. J. Richard, Comput. Fluids 34, 121 (2005) http://dx.doi.org/10.1016/j.compfluid.2004.03.005 [Crossref]

  • [20] E. A. Rawashdeh, Appl. Math. Comput. 176, 1 (2006) http://dx.doi.org/10.1016/j.amc.2005.09.059 [Crossref]

  • [21] C. K. Chui, Multivariate splines, CBMS Series in Applied Mathematics no 54 (SIAM, Philadelphia, PA, 1988)

  • [22] C. de Boor, K. Höllig, S. Riemenschneider, Box splines, Appl. Math. Sci. 98 (Springer-Verlag, New York, 1993) http://dx.doi.org/10.1007/978-1-4757-2244-4 [Crossref]

  • [23] G. Nürnberger, Approximation by Spline Functions (Springer-Verlag, Berlin, 1989) http://dx.doi.org/10.1007/978-3-642-61342-5 [Crossref]

  • [24] W. Schempp, Contemporary Mathematics 7, Amer. Math. Soc. (1982)

  • [25] T. Blu, M. Unser, IEEE T. Signal Proces. 47, 2796 (1999) http://dx.doi.org/10.1109/78.790660 [Crossref]

  • [26] B. Forster, T. Blu, M. Unser, Appl. Comput. Harmon. Anal. 20, 261 (2006) http://dx.doi.org/10.1016/j.acha.2005.07.003 [Crossref]

  • [27] I. Podlubny, Fractional Differential Equations (Academic Press, SanDiego, 1999)

  • [28] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge University Press, Atkinson Kendall, United States of America, 1997) http://dx.doi.org/10.1017/CBO9780511626340 [Crossref]

  • [29] Yu. Luchko, R. Gorenflo, Acta Math. Vietnamica 24, 207 (1999)

  • [30] M. Unser, T. Blu, SIAM Rev. 42, 43 (2000) http://dx.doi.org/10.1137/S0036144598349435 [Crossref]

About the article

Published Online: 2013-12-19

Published in Print: 2013-10-01


Citation Information: Open Physics, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-013-0222-4. Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ricardo Almeida and Nuno R. O. Bastos
Mediterranean Journal of Mathematics, 2015

Comments (0)

Please log in or register to comment.
Log in