Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2016 (Open Physics): 0.745
IMPACT FACTOR 2016 (Central European Journal of Physics): 0.765

CiteScore 2016: 0.82

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 11, Issue 10 (Oct 2013)

Issues

Numerical solution of fractional differential equations by using fractional B-spline

Hossein Jafari
  • International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, P. Bag X2046, Mmabatho, 2735, South Africa
  • Department of Mathematics, University of Mazandaran, 47416-95447, Babolsar, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chaudry Khalique
  • International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, P. Bag X2046, Mmabatho, 2735, South Africa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Ramezani / Haleh Tajadodi
Published Online: 2013-12-19 | DOI: https://doi.org/10.2478/s11534-013-0222-4

Abstract

In this paper, we present fractional B-spline collocation method for the numerical solution of fractional differential equations. We consider this method for solving linear fractional differential equations which involve Caputo-type fractional derivatives. The numerical results demonstrate that the method is efficient and quite accurate and it requires relatively less computational work. For this reason one can conclude that this method has advantage on other methods and hence demonstrates the importance of this work.

Keywords: fractional B-spline; fractional differential equations; collocation method; Caputo derivative

  • [1] M. Caputo, J. Roy. Austral. Soc. 13, 529 (1967) http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.xCrossrefGoogle Scholar

  • [2] J. G. Lu, G. Chen, Chaos Soliton. Fract. 27, 685 (2006) http://dx.doi.org/10.1016/j.chaos.2005.04.037CrossrefGoogle Scholar

  • [3] R. L. Bagley, P.J. Torvik, AIAA J. 21, 741 (1983) http://dx.doi.org/10.2514/3.8142CrossrefGoogle Scholar

  • [4] L. Gaul, P. Klein, S. Kempfle, Mech. Res. Commun. 16, 297 (1989) http://dx.doi.org/10.1016/0093-6413(89)90067-0CrossrefGoogle Scholar

  • [5] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos (World Scientific, Boston, 2012) Google Scholar

  • [6] K. B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York and London, 1974) Google Scholar

  • [7] V. Daftardar-Gejji, H. Jafari, J. Math. Anal. Appl. 189, 541 (2007) Google Scholar

  • [8] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (CRC Press, Boca Raton, Chapman & Hall, 2003) http://dx.doi.org/10.1201/9780203491164CrossrefGoogle Scholar

  • [9] H. Jafari, S. Das, H. Tajadodi, Journal of King Saud University-Science 23, 151 (2011) http://dx.doi.org/10.1016/j.jksus.2010.06.023CrossrefGoogle Scholar

  • [10] H. Jafari, N. Kadkhoda, H. Tajadodi, S.A. Hosseini-Matikolai, Int. J. Nonlin. Sci. Num. 11, 271 (2010) Google Scholar

  • [11] H. Jafari, Sh. Momani, Phys. Lett. A 370, 388 (2007) http://dx.doi.org/10.1016/j.physleta.2007.05.118CrossrefGoogle Scholar

  • [12] H. Jafari, H. Tajadodi, D. Baleanu, Fract. Calc. Appl. Anal. 16, 109 (2013). Google Scholar

  • [13] H. Jafari, H. Tajadodi, Int. J. Diff. Eqn. 2010, 764738 (2010) Google Scholar

  • [14] G. C. Wu, E.W.M. Lee, Phys. Lett. A 374, 2506 (2010) http://dx.doi.org/10.1016/j.physleta.2010.04.034CrossrefGoogle Scholar

  • [15] G. C. Wu, Therm. Sci. 16, 1257 (2012) http://dx.doi.org/10.2298/TSCI1204257WCrossrefGoogle Scholar

  • [16] G. C. Wu, Int. Rev. Chem. Eng. 4, 505 (2012) Google Scholar

  • [17] G. C. Wu, D. Baleanu, Adv. Difference Equ. 2013, 18 (2013) http://dx.doi.org/10.1186/1687-1847-2013-18CrossrefGoogle Scholar

  • [18] H. Jafari, S.A. Yousefi, M.A. Firoozjaee, Commun. Frac. Calc. 2, 9 (2011) Google Scholar

  • [19] W. J. Richard, Comput. Fluids 34, 121 (2005) http://dx.doi.org/10.1016/j.compfluid.2004.03.005CrossrefGoogle Scholar

  • [20] E. A. Rawashdeh, Appl. Math. Comput. 176, 1 (2006) http://dx.doi.org/10.1016/j.amc.2005.09.059CrossrefGoogle Scholar

  • [21] C. K. Chui, Multivariate splines, CBMS Series in Applied Mathematics no 54 (SIAM, Philadelphia, PA, 1988) Google Scholar

  • [22] C. de Boor, K. Höllig, S. Riemenschneider, Box splines, Appl. Math. Sci. 98 (Springer-Verlag, New York, 1993) http://dx.doi.org/10.1007/978-1-4757-2244-4CrossrefGoogle Scholar

  • [23] G. Nürnberger, Approximation by Spline Functions (Springer-Verlag, Berlin, 1989) http://dx.doi.org/10.1007/978-3-642-61342-5CrossrefGoogle Scholar

  • [24] W. Schempp, Contemporary Mathematics 7, Amer. Math. Soc. (1982) Google Scholar

  • [25] T. Blu, M. Unser, IEEE T. Signal Proces. 47, 2796 (1999) http://dx.doi.org/10.1109/78.790660CrossrefGoogle Scholar

  • [26] B. Forster, T. Blu, M. Unser, Appl. Comput. Harmon. Anal. 20, 261 (2006) http://dx.doi.org/10.1016/j.acha.2005.07.003CrossrefGoogle Scholar

  • [27] I. Podlubny, Fractional Differential Equations (Academic Press, SanDiego, 1999) Google Scholar

  • [28] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge University Press, Atkinson Kendall, United States of America, 1997) http://dx.doi.org/10.1017/CBO9780511626340CrossrefGoogle Scholar

  • [29] Yu. Luchko, R. Gorenflo, Acta Math. Vietnamica 24, 207 (1999) Google Scholar

  • [30] M. Unser, T. Blu, SIAM Rev. 42, 43 (2000) http://dx.doi.org/10.1137/S0036144598349435CrossrefGoogle Scholar

About the article

Published Online: 2013-12-19

Published in Print: 2013-10-01


Citation Information: Open Physics, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-013-0222-4.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in