Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2016 (Open Physics): 0.745
IMPACT FACTOR 2016 (Central European Journal of Physics): 0.765

CiteScore 2016: 0.82

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 11, Issue 10 (Oct 2013)

Issues

Existence and uniqueness of a complex fractional system with delay

Rabha Ibrahim / Hamid Jalab
Published Online: 2013-12-19 | DOI: https://doi.org/10.2478/s11534-013-0252-y

Abstract

Chaotic complex systems are utilized to characterize thermal convection of liquid flows and emulate the physics of lasers. This paper deals with the time-delay of a complex fractional-order Liu system. We have examined its chaos, computed numerical solutions and established the existence and uniqueness of those solutions. Ultimately, we have presented some examples.

Keywords: fractional calculus; fractional differential equations; fractional complex system

  • [1] C.Z. Ning, H. Haken, Phys. Rev. A 41, 3827 (1990) Google Scholar

  • [2] A.D. Kiselev, J. Phys. Stud. 2, 3037 (1998) Google Scholar

  • [3] A. Rauh, L. Hannibal, N.B. Abraham, Physica D 99, 45 (1996) http://dx.doi.org/10.1016/S0167-2789(96)00129-7CrossrefGoogle Scholar

  • [4] S. Panchey, N.K. Vitanov, J. Calcutta Math. Soc. 1, 121 (2005) Google Scholar

  • [5] E.E. Mahmoud, G.M. Mahmoud, Chaotic and Hyperchaotic Nonlinear Systems (Lambert Academic Publishing, Germany, 2011) Google Scholar

  • [6] C. Liu, T. Liu, L. Liu, K. Liu, Chaos Soliton. Fract. 22, 1031 (2004) http://dx.doi.org/10.1016/j.chaos.2004.02.060CrossrefGoogle Scholar

  • [7] X. Wang, M. Wang, Chaos 17, 1 (2007) Google Scholar

  • [8] X. Gao, Appl. Mech. Mater. 1327, 1327 (2011) http://dx.doi.org/10.4028/www.scientific.net/AMM.55-57.1327CrossrefGoogle Scholar

  • [9] E.E. Mahmoud, Math. Comput. Model. 55, 1951 (2012) http://dx.doi.org/10.1016/j.mcm.2011.11.053CrossrefGoogle Scholar

  • [10] R.W. Ibrahim, Abstr. Appl. Anal. 127103, 1 (2013) Google Scholar

  • [11] H. Haken, Phys. Lett. A 53, 77 (1975) http://dx.doi.org/10.1016/0375-9601(75)90353-9CrossrefGoogle Scholar

  • [12] I. Podlubny, Fractional Differential Equations (Academic Press, London and New York, 1999) Google Scholar

  • [13] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, (Elsevier, North-Holland, 2006) Google Scholar

  • [14] D. Matignon, Proceedings of the IMACS-SMC’96, 2 (1996) Google Scholar

About the article

Published Online: 2013-12-19

Published in Print: 2013-10-01


Citation Information: Open Physics, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-013-0252-y.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in