Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2016 (Open Physics): 0.745
IMPACT FACTOR 2016 (Central European Journal of Physics): 0.765

CiteScore 2016: 0.82

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 12, Issue 11 (Nov 2014)

Issues

Intrinsic classes in the Union of European Football Associations soccer team ranking

Marcel Ausloos
  • Royal Netherlands Academy of Arts and Sciences, Joan Muyskenweg 25, 1096 CJ, Amsterdam, The Netherlands
  • GRAPES, Federation Wallonie-Bruxelles, rue de la Belle Jardinière 483, B-4031, Liège, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-17 | DOI: https://doi.org/10.2478/s11534-014-0505-4

Abstract

A strong structural regularity of classes is found in soccer teams ranked by the Union of European Football Associations (UEFA) for the time interval 2009–2014. It concerns 424 to 453 teams according to the 5 competition seasons. The analysis is based on the rank-size theory considerations, the size being the UEFA coefficient at the end of a season. Three classes emerge: (i) the few ”top” teams, (ii) 300 teams, (iii) the rest of the involved teams (about 150) in the tail of the distribution. There are marked empirical laws describing each class. A 3-parameter Lavalette function is used to describe the concave curving as the rank increases, and to distinguish the the tail from the central behavior.

Keywords: team ranking; soccer; rank-size relation; Lavalette function; intrinsic complexity

  • [1] R. Axelrod, M. D. Cohen, Harnessing complexity: Organizational implications on a scientific frontier (New York, Free Press, 1999) Google Scholar

  • [2] W. B. Arthur, Science 284, 107 (1999) http://dx.doi.org/10.1126/science.284.5411.107CrossrefGoogle Scholar

  • [3] H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge, Cambridge University Press, 1997). Google Scholar

  • [4] A. Gadomski, Nonlinear Phenomena in Complex Systems. 3, 321 (2000) Google Scholar

  • [5] N. K. Vitanov, I. P. Jordanov, Z. I. Dimitrova, Communications in Nonlinear Science and Numerical Simulation 14, 2379 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.07.015CrossrefGoogle Scholar

  • [6] C. S. Bertuglia, F. Vaio, Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems (Oxford University Press, Oxford, 2005) Google Scholar

  • [7] J. Kwapien, S. Drozdz, Phys. Rep. 515, 115 (2012) http://dx.doi.org/10.1016/j.physrep.2012.01.007CrossrefGoogle Scholar

  • [8] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987). http://dx.doi.org/10.1103/PhysRevLett.59.381CrossrefGoogle Scholar

  • [9] B. M. Roehner, Driving forces in physical, biological and socio-economic phenomena: a network science investigation of social bonds and interactions, (Cambridge University Press, 2007) http://dx.doi.org/10.1017/CBO9780511611148CrossrefGoogle Scholar

  • [10] G. K. Zipf, Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology (Cambridge, Mass: Addison Wesley, 1949) Google Scholar

  • [11] H. M. Edwards, Riemann Zeta Function (Academic Press, 1974) Google Scholar

  • [12] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics (Wiley, New York, 1996) http://dx.doi.org/10.1002/9781118032572CrossrefGoogle Scholar

  • [13] E. C. Titchmarsh, The Theory of the Riemann Zeta Function (Oxford University Press, 1951) Google Scholar

  • [14] Deng Weibing, Li Wei, Cai Xu, A. Bulou, A. Wang Qiuping, New J. Phys. 14, 093038 (2012) http://dx.doi.org/10.1088/1367-2630/14/9/093038CrossrefGoogle Scholar

  • [15] B. Pilavci, On-pitch success in UEFA Champions League: an empirical analysis of economic, demographic and traditional factors, Master’s thesis within Economics and Management of Entertainment & Art Industries, Jönköping University (2011) Google Scholar

  • [16] C. P. Barros, J. del Corral, P. Garcia-del-Barrio, J. Sport. Econom. 9, 451 (2008) Google Scholar

  • [17] C. P. Barros, P. Garcia-del-Barrio, Econ. Model. 25, 994 (2008) http://dx.doi.org/10.1016/j.econmod.2008.01.004CrossrefGoogle Scholar

  • [18] http://www.fifa.com/aboutfifa/organisation/homefifa/index.html Google Scholar

  • [19] http://www.fifa.com/aboutfifa/organisation/confederations/index.html Google Scholar

  • [20] R. T. Stefani, J. Appl. Stat. 24, 635 (1997) http://dx.doi.org/10.1080/02664769723387CrossrefGoogle Scholar

  • [21] W. Kern, D. Paulusma, Discr. Appl. Math. 108, 317 (2001) http://dx.doi.org/10.1016/S0166-218X(00)00241-9CrossrefGoogle Scholar

  • [22] P. Macmillan, I. Smith, J. Sport Econ. 8, 202 (2007) http://dx.doi.org/10.1177/1527002505279344CrossrefGoogle Scholar

  • [23] M. Ausloos, R. Cloots, A. Gadomski, N. K. Vitanov, arxiv: 1403.5683 Web of ScienceGoogle Scholar

  • [24] A. C. Constantinou, N. E. Fenton, Journal of Quantitative Analysis in Sports, 9, 37 (2013) http://dx.doi.org/10.1515/jqas-2012-0036CrossrefGoogle Scholar

  • [25] http://fr.uefa.com/memberassociations/uefarankings/club/index.html Google Scholar

  • [26] R. A. Fairthorne, J. Doc. 25, 319 (1969) http://dx.doi.org/10.1108/eb026481CrossrefGoogle Scholar

  • [27] D. Lavalette, Facteur d’impact: impartialité ou impuissance?, Internal Report, INSERM U350, Institut Curie, France. (Nov. 1996) Google Scholar

  • [28] C. Rose, D. Murray, D. Smith, Mathematical Statistics with Mathematica (Springer, New York, 2002) p. 107 http://dx.doi.org/10.1007/978-1-4612-2072-5CrossrefGoogle Scholar

  • [29] R. Mansilla, E. Köppen, G. Cocho, P. Miramontes, J. Informetr. 1, 155 (2007) http://dx.doi.org/10.1016/j.joi.2007.01.001CrossrefGoogle Scholar

  • [30] I.A. Voloshynovska, J. Quant. Linguist. 18, 274 (2011) http://dx.doi.org/10.1080/09296174.2011.583405CrossrefGoogle Scholar

  • [31] K. Levenberg, Quart. Appl. Math. 2, 164 (1944) Google Scholar

  • [32] D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963) http://dx.doi.org/10.1137/0111030CrossrefGoogle Scholar

  • [33] M. I. A. Lourakis, Foundation of Research and Technology 4, 1 (2011) Google Scholar

  • [34] A. Ranganathan, The Levenberg-Marquardt algorithm, Tutorial on LM Algorithm (2004) Google Scholar

  • [35] M. E. J. Newman, Contemp. Phys 46, 323 (2005) http://dx.doi.org/10.1080/00107510500052444CrossrefGoogle Scholar

  • [36] S. Brakman, H. Garretsen, C. van Marrewijk, M. van den Berg, J. Regional Sci. 39, 182 (1999) http://dx.doi.org/10.1111/1467-9787.00129CrossrefGoogle Scholar

  • [37] Deloitte, Annual Review of Football Finance (2013) Google Scholar

  • [38] T. L. Hill, Thermodynamics of Small Systems (Dover, New York, 1994) Google Scholar

  • [39] A. Gadomski, J. M. Rubi, Chem. Phys. 293, 169 (2003) Google Scholar

  • [40] J. M. Rubi, D. Bedeaux, S. Kjelstrup, J. Phys. Chem. B 110, 12733 (2006) Google Scholar

  • [41] I. Fainmesser, Ch. Fershtman, N. Gandal, J. Sport. Econ. 10, 582 (2009) http://dx.doi.org/10.1177/1527002509336891CrossrefGoogle Scholar

About the article

Published Online: 2014-08-17

Published in Print: 2014-11-01


Citation Information: Open Physics, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/s11534-014-0505-4.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in