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Abstract: In this paper, we study the scalar fields evolving on a FRW brane embedded in a five-dimensional de Sitter
bulk. The scale function and the warp factor, solutions of the Einstein equations, are employed in the five-
dimensional Gordon equation describing the massive scalar field, whose wave function depends on the
cosmic time and on the extra-dimension. We point out the existence of bounded states and find a minimum
value of the effective four-dimensional mass. For the test (scalar) field envelope along the extra-dimension,
we derive the corresponding Schrödinger-like equation which is formally that for the Pöschl-Teller potential.
Accordingly, we have obtained the quantization law for the mass parameter of the tested scalar field.
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1. Introduction

From a cosmological view point, theories formulated onmore than four dimensions, with ordinary matter trappedon the brane and gravitation only propagating throughthe entire bulk, that emerged from the pioneering workof Randall and Sundrum (RS) [1, 2], have offered an al-ternative scenario for explaining the late-time acceleratedexpansion of the universe [3–8].
In contrast to the standard RS setup with empty bulk(apart of the cosmological constant), and fields confined onthe brane, it has been assumed that matter might evolve in
∗E-mail: marina@uaic.ro

the entire bulk and research has recently been dedicatedto the cosmological consequences of this [9].A particular form of bulk or brane matter, which is believedto have played an important role both in the early universeand in late-time acceleration, is the scalar field, with min-imal or suitable choices of non-minimal couplings [10, 11].Supported by data from high redshift Type Ia supernovae,these fields are seen as natural models of matter withnegative pressure, called quintessence [12–16].The revolutionary concept of inflation, as an early stageof the accelerated expansion of the universe, has offereda solution not only to the classic problems raised by thestandard big bang cosmology, but also to the one relatedto the mechanism of structures formation in the universe.By assuming that the scalar field, with the correspondingenergy density and pressure, is the only source of gravity,in some scenarios, the cosmic acceleration is driven by the
453



Scalar particles mass spectrum and localization on FRW branes embedded in a 5D de Sitter bulk

four-dimensional field confined to the brane [17], while inothers the massive scalar is filling the entire bulk [18–20].In contrast to the localized zero scalar mode and a con-tinuum of arbitrary light states, provided by the RS back-ground, once one allows for a small (non-zero) mass, themassless bound state is replaced by a quasi-localizedstate with finite mass and width. The latter being relatedto the probability of state’s decay into the bulk [21].This paper follows previous investigations into a FRWbrane embedded in a five-dimensional de Sitter bulk [22].The derived scale function and warp factor are employedin the five-dimensional Klein–Gordon equation describingthe massive scalar field whose wave function will dependon the cosmic time and on the extra-dimension.Our results agree with those obtained by Langlois andSasaki [23], who considered a test scalar field on a givenbackground configuration and solved the Klein–Gordonequation in the bulk. They found an interesting rela-tionship between the effective four-dimensional mass ofthe scalar states localized on the de Sitter brane and thefive-dimensional mass.
2. The geometry
Let us start with the warped five-dimensional line elementwith an induced 3−brane with k = 0−FRW cosmologicalbackground

ds25 = e2F (τ,ζ)ηikdx idxk + (dζ)2 , i, k = 1, 4 , (1)
where the function F in the warp factor depends on theconformal time τ and on the extra-dimension coordinate,
x5 = ζ , varying from −∞ to ∞.

In terms of the orthonormal tetradic frames
ea = {

ei = e−F ∂i , e5 = ∂ζ
} and ωa ={

ωi = eF dx i , ω5 = dζ
}, the Cartan formalism leads tothe connection coefficients

Γα4α = F|4 , Γα5α = F|5 , Γ454 = −F|5 , (2)
where α = 1, 3, F|a = eaF , which furthermore leadsto the following five-dimensional Einstein tensor compo-nents [22]

Gαβ = {− [2F|44 + 3 (F|4)2]+ 3 [F|55 + 2 (F|5)2]} δαβ ,
G44 = 3 (F|4)2 − 3 [F|55 + 2 (F|5)2] ,
G55 = −3 [F|44 + 2 (F|4)2]+ 6 (F|5)2 ,
G45 = − 3F|54 . (3)For a scalar field supporting this geometry, described bythe energy-momentum tensor

Tab = φ|aφ|b −
12ηab [ηcdφ|cφ|d + 2V (φ)] ,

the Einstein equations,
Gab = κTab ,

where κ is Einstein’s constant in five-dimensions, do ex-plicitly read

−e−2F [2F,44 + (F,4 )2]+ 3 [F,55 +2 (F,5 )2] = κ2 e−2F (φ,4 )2 − κ2 [(φ,5 )2 + 2V ] ;
3e−2F (F,4 )2 − 3 [F,55 +2 (F,5 )2] = κ2 e−2F (φ,4 )2 + κ2 [(φ,5 )2 + 2V ] ;
−3e−2F [F,44 + (F,4 )2]+ 6 (F,5 )2 = κ2 e−2F (φ,4 )2 + κ2 [(φ,5 )2 − 2V ] ;

−3F,54 = κ φ,4 φ,5 . (4)

For a conformally flat brane (as it actually stands for thecase of (k = 0)-RW models), the most natural choice ofthe warp function F is
F (τ, ζ) = f (τ) + h(ζ) , (5)

so that the non-diagonal component of the Einstein’s ten-sor, G45, vanishes and the relationships in (2) become
Γα4α = e−fe−h∂4f , Γα5α = ∂5h , Γ454 = − ∂5h , (6)
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where ∂4f = ∂τf ≡ f ′ and ∂5h = ∂ζh ≡ h′.With respect to the scalar source, in view of the last equa-tion in (4), this can be taken either as a function of theextra-dimension, ζ , or of time [22].In the first case, i.e.
φ(xα , τ, ζ) = φ(ζ) ,

by switching to the proper time, t, by f ,4 = ef ḟ , where dotdenotes the derivative with respect to t, the system (4)takes the explicit form
−e−2h [2f̈ + 3(ḟ)2]+ 3 [h,55 +2 (h,5 )2]
= − κ2 [(φ,5 )2 + 2V ] ;
3e−2h (ḟ)2

− 3 [h,55 +2 (h,5 )2] = κ2 [(φ,5 )2 + 2V ] ;
−3e−2h [f̈ + 2(ḟ)2]+ 6 (h,5 )2 = κ2 [(φ,5 )2 − 2V ] .

(7)
By summing up the first two equations, one finds f̈ = 0,i.e. f = Ht and thus the cosmological dynamics of the(k = 0)-RW brane will be too simple, being turned into apermanently de Sitter one.Secondly, let us consider the other important case whichhas been discussed in [22], i.e.

φ (xα , τ, ζ) = φ(τ) .
The Einstein–Gordon equations (4) read

−e−2(f+h) [2f ,44 + (f ,4 )2]+ 3 [h,55 +2 (h,5 )2]
= κ2 e−2(f+h) (φ,4 )2 − κV ;

3e−2(f+h) (f ,4 )2 − 3 [h,55 +2 (h,5 )2]
= κ2 e−2(f+h) (φ,4 )2 + κV ;
−3e−2(f+h) [f ,44 + (f ,4 )2]+ 6 (h,5 )2

= κ2 e−2(f+h) (φ,4 )2 − κV , (8)
and they lead to the following relationship between themetric functions f and h [22]

e−2f [f ,44 +2 (f ,4 )2]+ 3 e2h h,55 = 0 ,

satisfied by [22, 24]
(a) h(ζ) = ln [ ωQ0 cos (Q0ζ)] ;
(b) f (t) = 13 ln [ b2ω sinh (3ωt)] , (9)

and κV = 6Q20 , so that the scale factor of the brane is
a(t) = ef (t) = [ b2ω sinh (3ωt)]1/3

. (10)
The constants Q0 and ω are respectively proportional tothe cosmological constant of the dS5 bulk, Λ, and to theone on the visible brane, Λ0, by [24]

Q0 = √Λ6 , ω =√Λ03 ,

while the parameter b can be related by b = √2ωa3
∗ tothe definite special value of the scale function

a∗ = a(t∗) = [ b√2ω
]1/3

, (11)
for which the acceleration parameter

q = f̈ + (ḟ )2(ḟ )2 = 1− 3cosh2(3ωt) (12)
vanishes and the expansion of the universe gets acceler-ated.Thus, the scale factor (10) can be written as

a(t) = a∗
[ 1√2 sinh(√3Λ0 t)]1/3

. (13)
3. Bosons in the bulk
In this section, we are going to construct the wave func-tions of the bosons, considered as test particles evolvingin the five-dimensional bulk characterized by the line el-ement (1), with the metric functions (9).The real scalar field minimally coupled to bulk gravity isdescribed by the following Lagrangian,

L[Φ] = 12ηabΦ|aΦ|b + U(Φ) , (14)
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where the effective potential
U(Φ) = −µ22 Φ2 + λ4Φ4 , (15)

has two degenerate minima, U0 = −µ4/(4λ). For µ2 > 0,the zero KK Higgs mode has a non-vanishing vacuum ex-pectation value and turns from a massless into a massivedegree of freedom, as in the usual four-dimensional Higgsmechanism. After the Z2-symmetry got spontaneously bro-ken, near one of the degenerated vacua, Φ = φ + φ, weare going to keep only the mass term contribution, so thatthe potential is
U(φ) = µ2φ2 + . . . (16)

Thus, the Gordon-type equation
ηabφ|ab − ηabφ|cΓcab = ∂U

∂φ , (17)
in the pseudo-orthonormal frame with (6), where

ηabφ|ab = e−2fe−2h [∆φ − ∂2φ
∂τ2 + ∂f

∂τ
∂φ
∂τ

]+ ∂2φ
dζ2

and
ηabφ|cΓcab = 3e−2fe−2h ∂f

∂τ
∂φ
∂τ − 4∂h∂ζ ∂φ∂ζ ,

reads
e−2fe−2h [∆φ − ∂2φ

∂τ2 − 2 ∂f∂τ ∂φ∂τ
]+4∂h∂ζ ∂φ∂ζ +∂2φ

dζ2 = 2µ2φ .(18)The bulk equation (18) is separable for functions φ of theform
φ = g(τ)Z (ζ) , (19)

where g is a function of the time alone. We switch from τto t, by
∂
∂τ = ef ∂∂t ,

∂2
∂τ2 = e2f [ ∂2

∂t2 + ∂f
∂t
∂
∂t

]
,

and we come to the following system of decoupled equa-tions:
(a) d2g

dt2 + 3dfdt dgdt = Cg ,

(b) d2Z
dζ2 + 4dhdζ dZdζ − 2µ2Z = Ce−2hZ , (20)

where the sign of the constant C will be discussed below.With the metric function (9.b) and the new variable η =3ωt, the first equation in system (20) becomes
d2g
dη2 + coth ηdgdη − C9ω2 g = 0 . (21)

As in the case for spherical functions, considering com-plex duality reasons, θ ∼ ±iη, it can be proven that thefollowing quantized value of the separation constant C ,namely
Cn ≡ 9ω2 [n2 − 14

]
, n = 1, 2, 3, . . . (22)

is the only one which leads to the mathematically well-behaved set of linearly independent functions, namely thethorus functions [25]
g+(η) = {Pn−1/2(cosh η) , Qn−1/2(cosh η)} . (23)

These are “bounded”, actual decaying states with no freeparticle interpretation, since, with the change of function
g+(η) = 1√sinh η u+(η) ,

the new functions u+ satisfy the Schrödinger-like form
d2u+
dη2 + [−(n2 + 14

)+ 14 coth2 η
]
u+ = 0 , (24)

with negative energy parameter and negative potential
VS = − 14 coth2 η , (25)

with u+ being the Legendre functions
u+(η) = {

P−1/2
n (coth η) , Q−1/2

n (coth η)} .
In the opposite situation where C is negative, one candefine a positive constant k = −C > 0 which acts in(20.a) as an effective four-dimensional mass. The function
u− is a solution of the equation

d2u−
dη2 + [( k9ω2 − 12

)+ 14 coth2 η
]
u− = 0 ,

highlighting the inflection value k0 of k , for |η| → ∞ inthe previous equation, i.e.
k09ω2 − 12 = −14 .The following condition for the parameter k ,

k ≥ k0 = 9ω24 = 34Λ0 (26)
leads to the lower limit of the effective four-dimensionalmass.
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4. Mass spectrum and localization
Let us now focus on the second equation of (20) and dis-cuss the two cases corresponding to the opposite signs of
C .Using the relations (22) and (9.a), introducing the newvariable w = Q0ζ and the “mass” parameter

ε2 ≡ 2µ2
Q20 , (27)

the second equation in (20) becomes
d2Z+
dw2 −4 tanw dZ+

dw −
[
ε2 + 9 (n2 − 1/4)cos2 w

]
Z+ = 0 . (28)

Let us consider a solution of the form Z+(w) = cos−3/2(w) ·
v+, where the function v+ satisfies the following differen-tial equation:
d2v+
dw2 − tanw dv+dw + [(154 − ε2)− 9n2cos2 w

]
v+ = 0 .(29)

For
154 − ε2 = ν(ν + 1) ,

leading to the spectrum

2µ2 = (154 − ν2 − ν
)
Q20 , (30)

the two linearly-independent solutions of (29) are the Leg-endre functions
v+(w) = {Pν3n(sinw)) , Qν3n(sinw))} , (31)

which can be expressed in terms of hypergeometric func-tions [25] as

Pν3n(sinw) = 1Γ(1− ν)
(1 + sinw1− sinw

)ν/2 2F1
(
−3n, 3n+ 1; 1− ν ; 1− sinw2

)
Qν3n(sinw) = π2 sin(νπ)

[
Pν3n cos(νπ)− Γ(3n+ 1 + ν)Γ(3n+ 1− ν) P−ν3n

]
, (32)

with
ν1,2 = − 12 ±√4− ε2 .

When the mass reaches the value corresponding to ε2 =15/4, the order ν1 vanishes and the associated Legendrefunctions (31) simply become Legendre functions of firstand second kind, respectively.The condition ε2 = 4 leads to a special value of the massparameter µ, related to the dS5 cosmological constant by
µ20 = Λ3 ,

which, as in the RS model where
Λ6 = ( M35

M2
Pl

)2
,

can be expressed in terms of the five-dimensional grav-itational mass scale, M5, and the effective Planck massby
µ0 = √2 M35

M2
Pl
.

In this particular case, for which the functions (31) are
v0+(w) = {

P−1/23n (sinw)) , π6n+ 1P1/23n (sinw))} , (33)
we obtain, using the first relation in (32), the periodicfunctions
v0+(w) = {√ 2

π
26n+ 1 1√cosw sin [6n+ 12 (

w − π2 )
]
,√

π2 26n+ 1 1√cosw cos [6n+ 12 (
w − π2 )

]}
(34)
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and
Z 0+(w) = {√ 2

π
26n+ 1 1cos2 w sin [6n+ 12 (

w − π2 )
]
,√

π2 26n+ 1 1cos2 w cos [6n+ 12 (
w − π2 )

]}
.

(35)
For a particle (along the extra-dimension) interpreta-tion, let us perform the change of function Z+(w) =
s+(w)/ cos2 w , so that equation (28) casts in theSchrödinger-like form

d2s+
dw2 + [(4− ε2)+ 14 − 9n2cos2 w

]
s+ = 0 , (36)

where the positive potential
VS (w) = 9n2 − 14cos2 w

is always above the energy parameter 4− ε2, for n 6= 0.Thus, one may conclude by stating that the decayingstates on the brane, described by the wave functions (23),are not traveling in the bulk between the branes.Finally, for a negative value of the separation constant,
C = −k , in equation (20.b), the equivalent of equation(36) is

d2s−
dw2 + [(4− ε2)− 2− k

ω2cos2 w
]
s− = 0 , (37)

highlighting the potential
VS (w) = 2− k

ω2cos2 w ,

which is negative, in view of condition (26).The solution is expressed in terms of hypergeometric func-tions as

s− ∼ (cosw) 12∓iσ 2F1
[14 −

√4− ε22 ∓ iσ2 , 14 + √4− ε22 ∓ iσ2 , 1∓ iσ ; cos2 w
]
,

where the quantity
σ ≡

√
k
ω2 − 94

is positive, in view of (26), and there are no restrictionson the parameter ε2.The definition range of the solution is a union of domainsof the typical form w ∈
(
− π2 , π2 ).For the inflection value k0 = 9ω2/4, the hypergeometricfunction is periodic and real (σ = 0), for ε either smalleror greater than 2.Finally, let us notice that the Schrödinger equation (37),by the duality switch 4−ε2 → ε2−4 of the formal eigen-value λ = ± (ε2 − 4), can be written in the generic formof the Schrödinger-like equation in the bulk,

d2s
dw2 + [ε2 − 4 + k

ω2 − 2cos2 w
]
s = 0 ,

which can be identified with that for the Pöschl-Tellerpotential [26]
VPT (w) = −A2 + A(A− 1)cos2 w , (38)

i.e.
d2ψ
dw2 + [En − VPT (w)]ψ = 0 ,

once the constant A is the root of the equation
A2 − A+ k

ω2 − 2 = 0 .
In order to obtain the first non-negative value for A, onehas to impose k = k0 = 9ω2/4 so that A = 1/2. Therefore,the bound state “energy” eigenvalues of the potential (38),generally given by [27]

En = −A2 + (2n+ A)2 (39)
lead to the following quantization law

ε2
n = 4[(n+ 14

)2 + 1] .
For large values of n, the above relation becomes εn ≈ 2n,so that the mass parameter (corresponding to the effective
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mass-squared on the brane k0 = m20 = 3Λ0/4) is a multipleof de Sitter quanta,
µn =√Λ3 n . (40)

5. Conclusions
For a five-dimensional de Sitter bulk with an induced
k = 0−FRW brane, the system of Einstein’s equationswith a massless scalar field depending on time as its mat-ter source, is satisfied by the warp factor (9.a), highlight-ing the typical domain Q0ζ ∈ (

− π2 , π2 ) and the scalefunction (10).The massive scalar evolving in this given background, seenas a test particle, with no backreaction on the geometry,is described by the Klein–Gordon equation (18). For thewave function depending on time and on extra-dimension,we have derived the massive scalar modes, both in thebulk and on the brane.Special attention has been given to their spectrum and itsinterpretation, particularly with respect to their localiza-tion.We have found general massive bound states, whose massparameter, corresponding to the effective four-dimensionalmass-squared m20 = 3Λ0/4, is a multiple of de Sitterquanta.When k > 9ω2/4, the corresponding five-dimensionalPöschl–Teller energy parameter (39) has an imaginarypart, meaning that the corresponding states are decay-ing back into the brane.
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