Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2016 (Open Physics): 0.745
IMPACT FACTOR 2016 (Central European Journal of Physics): 0.765

CiteScore 2017: 0.83

SCImago Journal Rank (SJR) 2017: 0.241
Source Normalized Impact per Paper (SNIP) 2017: 0.537

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Schrödinger spectrum generated by the Cornell potential

Richard L. Hall
  • Corresponding author
  • Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montréal, Québec, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nasser Saad
  • Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-28 | DOI: https://doi.org/10.1515/phys-2015-0012

Abstract

The eigenvalues Ednl (a, c) of the d-dimensional Schrödinger equation with the Cornell potential V(r) = −a/r + c r, a, c > 0 are analyzed by means of the envelope method and the asymptotic iteration method (AIM). Scaling arguments show that it is suffcient to know E(1, λ), and the envelope method provides analytic bounds for the equivalent complete set of coupling functions λ(E). Meanwhile the easily-implemented AIM procedure yields highly accurate numerical eigenvalues with little computational effort.

Keywords : quarkonium; quark-antiquark bound states; confining potentials; Schrödinger’s equation; asymptotic iteration method; Airy functions

PACS : 03.65.Ge; 12.39.Pn; 11.10.Qr; 12.40.Qq; 14.40.Gx; 14.40.Jz

References

  • [1] J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013)Google Scholar

  • [2] H.-S. Chung, J. Lee, J. Korean Phys. Soc. 52, 1151 (2008)CrossrefGoogle Scholar

  • [3] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.- M. Yan, Phys. Rev. Lett. 34, 369 (1975) [Erratum-ibid. 36, 1276 (1976)].CrossrefGoogle Scholar

  • [4] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. D 17, 3090 (1978)Google Scholar

  • [5] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane, T.-M. Yan, Phys. Rev. D 21, 203 (1980)Google Scholar

  • [6] P.W.M. Evans, C.R. Allton, J.-I. Phys. Rev. D 89, 071502 (2014)Google Scholar

  • [7] J.-K. Chen, Phys. Rev. D 88, 076006 (2013)Google Scholar

  • [8] M. Hamzavi, A.A. Rajabi, Ann Phys.-New York 334, 316 (2013)Google Scholar

  • [9] C.O. Dib, N.A. Neill, Phys. Rev. D 86, 094011 (2012)Google Scholar

  • [10] G.S. Bali, Phys. Rep. 343, 1 (2001)CrossrefGoogle Scholar

  • [11] D. Kang, E. Won, J. Comput. Phys. 20, 2970 (2008) 2970.CrossrefGoogle Scholar

  • [12] R.L. Hall, Phys. Rev. D 30, 433 (1984)CrossrefGoogle Scholar

  • [13] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)CrossrefGoogle Scholar

  • [14] R.L. Hall, Phys. Rev. D 22, 2062 (1980)Google Scholar

  • [15] R.L. Hall, J. Math. Phys. 24, 324 (1983)CrossrefGoogle Scholar

  • [16] R.L. Hall, J. Math. Phys. 25, 2078 (1984)CrossrefGoogle Scholar

  • [17] R.L. Hall, Phys. Rev. A 39, 5500 (1989)CrossrefGoogle Scholar

  • [18] R.L. Hall, J. Math. Phys. 34, 2779 (1993)CrossrefGoogle Scholar

  • [19] K. Atkinson, W. Han, Spherical harmonics and approximations on the unit sphere: An introduction (Springer, New York, 2012)Google Scholar

  • [20] D.J. Doren, D.R. Herschbach, J. Chem. Phys. 85, 4557 (1986)Google Scholar

  • [21] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, The appropriate discrete-spectrumresult for the linear-plus-Coulomb potential is given by Theorem XIII.69 (Academic Press, New York, 1978) 250Google Scholar

  • [22] M. Abramowitz, I. Stegun, Handbook ofmathematical functions (Dover Publications, New York, 1965)Google Scholar

  • [23] L.D. Landau, E.M. Lifshitz, QuantumMechanics: non-relativistic theory (Pergamon, London, 1981) Google Scholar

About the article

Received: 2014-05-09

Accepted: 2014-08-12

Published Online: 2014-10-28

Published in Print: 2015-01-01


Citation Information: Open Physics, Volume 13, Issue 1, ISSN (Online) 2391-5471, DOI: https://doi.org/10.1515/phys-2015-0012.

Export Citation

© 2015 Richard L. Hall, Nasser Saad. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
K. Jahankohan, S. Zarrinkamar, and H. Hassanabadi
Quantum Studies: Mathematics and Foundations, 2016, Volume 3, Number 1, Page 109

Comments (0)

Please log in or register to comment.
Log in