Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Feng, Jonathan

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2016 (Open Physics): 0.745
IMPACT FACTOR 2016 (Central European Journal of Physics): 0.765

CiteScore 2016: 0.82

SCImago Journal Rank (SJR) 2015: 0.458
Source Normalized Impact per Paper (SNIP) 2015: 1.142

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 13, Issue 1 (Jan 2015)

Issues

Sources of inertia in an expanding universe

Kjell Prytz
Published Online: 2015-01-09 | DOI: https://doi.org/10.1515/phys-2015-0016

Abstract

In a cosmological perspective, gravitational induction is explored as a source to mechanical inertia in line with Mach’s principle. Within the standard model of cosmos, considering the expansion of the universe and the necessity of retarded interactions, it is found that the assumed dynamics may account for a significant part of an object’s inertia.

Keywords : inertia; gravitational induction; Mach’s principle; cosmology; general relativity

PACS : 04.20.Cv; 04.80.Cc; 95.30.Sf; 98.80.Es; 98.80.Jk

References

  • [1] V.B. Braginsky, V.I. Panov, Sov. Phys. JETP-USSR 34, 463 (1972) Google Scholar

  • [2] H.C. Ohanian, Gravitation and Spacetime (Norton & Company, New York and London, 1976) Google Scholar

  • [3] E.Mach, The Science of Mechanics (The Open Court Publishing, Chicago and London, 1919) Google Scholar

  • [4] A. Einstein, The meaning of relativity (Ed. 1: Methuen & Co Ltd 1922, Ed. 6: Chapman and Hall, London, 1956) Google Scholar

  • [5] K. Nordtvedt, Int. J. Theor. Phys. 27, 1395 (1988) Google Scholar

  • [6] D.W. Sciama, Mon. Not. R. Astron. Soc. 113, 34 (1953) Google Scholar

  • [7] A.P. French, Newtonian Mechanics (The MIT Introductory Physics Series, New York and London, 1971) Google Scholar

  • [8] A.K.T. Assis, Found. Phys. Lett. 26, 271 (1996) Google Scholar

  • [9] D.J. Raine, Rep. Prog. Phys. 44, 1151 (1981) Google Scholar

  • [10] N. Jarosik et al. (WMAP Collaboration), Astrophys. J. Suppl. S. 192, 14 (2011) Google Scholar

  • [11] P.A.R. Ade et al. (Planck Collaboration), Astron. Astrophys. 571, A16 (2014) Google Scholar

  • [12] L.R. Signore, Nuovo. Ciment. B 111, 1087 (1996) Google Scholar

  • [13] J. Sultana, D. Kazanas, Int. J. Mod. Phys. D 20, 1205 (2011) Google Scholar

  • [14] D. Bini et al., Classical Quant. Grav. 25, 1 (2008) Google Scholar

  • [15] L. Page, Am. J. Sci. 34, 57 (1912) Google Scholar

  • [16] W. Weber, Ann. Phys-Berlin 73, 229 (1848) Google Scholar

  • [17] C.F. Gauss, Zurmathematischen Theorie der elektrodynamische Wirkung (Werke Göttingen 5, 1867) Google Scholar

  • [18] C.M. Will, K. Nordtvedt, Astrophys. J. 177, 757 (1972) Google Scholar

  • [19] B. Ryden, Introduction to Cosmology (Addison-Wesley, San Fransisco, 2003) Google Scholar

  • [20] E. Kolb, M. Turner, The Early Universe (Westview Press, Boulder, Colorado, 1994) Google Scholar

About the article

Received: 2014-08-27

Accepted: 2014-10-28

Published Online: 2015-01-09


Citation Information: Open Physics, ISSN (Online) 2391-5471, DOI: https://doi.org/10.1515/phys-2015-0016.

Export Citation

© 2015 Kjell Prytz. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in