[1] Y. Aharonov, L. Davidovich, and N. Zagury: "Quantum random
walks" Phys. Rev. A, Vol. 48, (1993), PP. 1687.
Y. Aharonov, L. Davidovich, and N. Zagury: "Quantum random
walks", Phys. Rev. A, Vol. 48, (1993), PP. 1687.
Google Scholar

[2] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik:
"Environment-assisted quantum walks in photosynthetic energy
transfer", J. Chem. Phys., Vol. 129, (2008), PP. 174106.
Web of ScienceGoogle Scholar

[3] N. Shenvi, J. Kempe, and R.B. Whaley: "Quantum random-walk
search algorithm", Phys. Rev. A, Vol. 67, (2003), PP. 052307.
Google Scholar

[4] S. E. Venegas-Andraca: "Quantum walks: a comprehensive review
", Quantum Information Processing, Vol. 11, (2012), PP.
1015.
Google Scholar

[5] M. S. Underwood and D.L. Feder: "Universal quantum computation
by discontinuous quantum walk", Phys. Rev. A, Vol. 82,
(2010), PP. 042304.
Google Scholar

[6] N.B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon:
"Universal quantumcomputation using the discrete-time quantum
walk", Phys. Rev. A, Vol. 81, (2010), PP. 042330.
Google Scholar

[7] A.M. Childs: "Universal Computation by Quantum Walk", Phys.
Rev. Lett., Vol. 102, (2009), PP. 180501.
Web of ScienceGoogle Scholar

[8] A. M. Childs, D. Gosset, Z. Webb: "Universal Computation by
Multiparticle QuantumWalk ", Science, Vol. 339, (2013), PP. 791.
Google Scholar

[9] J. Watrous: "Quantum simulations of classical random walks
and undirected graph connectivity", Journal of computer and
system sciences, Vol. 62, (2001), PP. 376.
Google Scholar

[10] E. Farhi and S. Gutmann: "Quantum computation and decision
trees", Phys. Rev. A, Vol. 58, (1998), PP. 915.
Google Scholar

[11] H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y.
Silberberg: "Realization of Quantum Walks with Negligible Decoherence
in Waveguide Lattices", Phys. Rev. Lett., Vol. 100,
(2008), PP. 170506.
Web of ScienceGoogle Scholar

[12] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley,
E. Andersson, I. Jex, and Ch. Silberhorn: "Photons Walking the
Line: A Quantum Walk with Adjustable Coin Operations", Phys.
Rev. Lett., Vol. 104, (2010), PP. 050502.
Web of ScienceGoogle Scholar

[13] M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-
Guzik, and A. G. White: "Discrete Single-Photon QuantumWalks
with Tunable Decoherence", Phys. Rev. Lett., Vol. 104, (2010),
PP. 153602.
Google Scholar

[14] M. Karski,L. Förster, J. M. Choi, A. Steffen, W. Alt, D. Meschede,
A. Widera: "Quantum Walk in Position Space with Single Optically
Trapped Atoms ", Science, Vol. 325, (2009), PP. 174.
Web of ScienceGoogle Scholar

[15] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauss,
T. Fukuhara, I. Bloch, S. Kuhr: " Single-spin addressing in an
atomic Mott insulator ", Nature, Vol. 471, (2011), PP. 319.
Web of ScienceGoogle Scholar

[16] Y. Bromberg, Y. Lahini, R. Morandotti, and Y. Silberberg: "Quantum
and Classical Correlations in Waveguide Lattices", Phys.
Rev. Lett., Vol. 102, (2009), PP. 253904.
Web of ScienceGoogle Scholar

[17] A. Peruzzo, M. Lobino, J. C. F.Matthews, N.Matsuda, A. Politi, K.
Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg,
Y. Silberberg, M. G. Thompson, J. L. Obrien: "Quantum Walks of
Correlated Photons ", Science, Vol. 329,(2010), PP. 1500.
Web of ScienceGoogle Scholar

[18] P. L. Knight, E. Roldan, J. E. Sipe: "Quantum walk on the line as
an interference phenomenon", Phys. Rev. A, Vol. 68, (2003), PP.
020301.
Google Scholar

[19] Y.Omar, N. Paunkovic, L. Sheridan, S. Bose: "Quantumwalk on a
line with two entangled particles", Phys. Rev. A, Vol. 74, (2006),
PP. 042304.
Google Scholar

[20] Y. Lahini, M. Verbin, S. D. Huber, Y. Bromberg, R. Pugatch, and
Y. Silberberg: "Quantum walk of two interacting bosons", Phys.
Rev. A, Vol. 86, (2012), PP. 011603.
Web of ScienceGoogle Scholar

[21] X. Z. Qin, Y. G. Ke, X. W. Guan, Z. B. Li, N. Andrei, and C. H.
Lee: "QuantumWalks of Two Interacting Particles in One Dimension",
Phys. Rev. A, Vol. 90, (2014), PP. 062301.
Google Scholar

[22] V. Kendon:"Decoherence in quantum walks - A review", Mathematical
structures in computer science, Vol. 17, (2007), PP. 1169.
Google Scholar

[23] E. Farhi, and S. Gutmann:"Quantum computation and decision
trees", Phys. Rev. A, Vol. 58, (1997), PP. 915.
Google Scholar

[24] Z. J. Li, J. A. Izaac, and J. B. Wang: "Position-defect-induced
reflection, trapping, transmission, and resonance in quantum
walks", Phys. Rev. A, Vol. 87, (2013), PP. 012314.
Web of ScienceGoogle Scholar

[25] K. Mattle, M. Michler, H. Weinfurter, A. Zeilinger, M. Zukowski:
"Noncalssical statistics at multiport beam-splitters", Appl.
Phys. B, Vol. 60, (1995), PP. S111.
Google Scholar

[26] F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto,
M. Segev, and Y. Silberberg: "Discrete solitons in optics", Phys.
Rep., Vol. 463, (2008), PP. 1.
Google Scholar

[27] A. Yariv: Quantum Electronics, Wiley, New York, (1989).
Google Scholar

[28] A. Szameit, F. Dreisow, H. Hartung, S. Nolte, A. Tunnermann,
and F. Lederer: "Quasi-incoherent propagation in waveguide arrays",
Appl. Phys. Lett., Vol. 90, (2007), PP. 241113.
Web of ScienceGoogle Scholar

[29] L. H. Lu and Y. Q. Li: "Dynamics for partially coherent Bose-
Einstein condensates in double wells", Phys. Rev. A, Vol. 80,
(2009), PP. 033619.
Google Scholar

[30] R. Hanbury Brown and R. Q. Twiss: "Correlation between photons
in 2 coherent beams of light", Nature, Vol. 177, (1956), PP.
27.
Google Scholar

[31] J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J. Daley: "Entanglement
growth in quench dynamics with variable range interactions",
Phys. Rev. X, Vol. 3, (2013), PP. 031015.
Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.