Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2018: 147.55

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

An approximation method for fractional integro-differential equations

Ibrahim Emiroglu
  • Department of Mathematical Engineering, Yildiz Technical University, 34210-Davutpasa- Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-16 | DOI: https://doi.org/10.1515/phys-2015-0049


In this work, an approximation method is proposed for fractional order linear Fredholm type integrodifferential equations with boundary conditions. The Sinc collocation method is applied to the examples and its efficiency and strength is also discussed by some special examples. The results of the proposed method are compared to the available analytic solutions.

Keywords: Fractional Fredholm integro-differential equation; sinc-collocation method; Caputo derivative


  • [1] M.Zarebnia, Z.Nikpour, "Solution of linear Volterra integrodifferential equations via Sinc functions." International Journal of Applied Mathematics and Computation 2, 1 (2009): 001-010. DOI: 10.0000/ijamc.2010.2.1.63 CrossrefGoogle Scholar

  • [2] A.Mohsen, M.El-Gamel, "A Sinc-Collocation method for the linear Fredholm integro-differential equations." Zeitschrift für angewandte Mathematik und Physik 58, 3 (2007): 380-390. Google Scholar

  • [3] A.Mohsen, M.El-Gamel, "Sinc-collocation Algorithm for Solving Nonlinear Fredholm Integro-differential Equations." British Journal of Mathematics & Computer Science 4, 12 (2014): 1693- 1700. CrossrefGoogle Scholar

  • [4] A.Secer, S.Alkan, M.A.Akinlar, M.Bayram, "Sinc-Galerkin method for approximate solutions of fractional order boundary value problems", Boundary Value Problems, vol. 2013, article 281, 2013. Google Scholar

  • [5] M.A.Akinlar, A.Secer, M.Bayram, "Numerical solution of fractional Benney equation", AppliedMathematics and Information Sciences, vol. 8, no. 4, pp. 1633-1637, 2014. CrossrefGoogle Scholar

  • [6] M.A.Akinlar, A.Secer, M.Bayram, "Stability, synchronization control and numerical solution of fractional Shimizu-Morioka dynamical system", Applied Mathematics & Information Sciences, vol. 8, no. 4, pp. 1699-1705, 2014. CrossrefGoogle Scholar

  • [7] M.Kurulay, M.A.Akinlar, R.Ibragimov, "computational solution of a fractional integro-differential equation", Abstract and Applied Analysis, 2013/8/12, 2013. Google Scholar

  • [8] F.Stenger, "Approximations via Whittaker’s cardinal function." J. Approx. Theory 17, 222-240 (1976). DOI:10.1016/0021- 9045(76)90086-1 CrossrefGoogle Scholar

  • [9] F.Stengeri, "A sinc-Galerkin method of solution of boundary value problems." Math. Comput. 33, 85-109 (1979). Google Scholar

  • [10] E.T.Whittaker, "On the functions which are represented by the expansions of the interpolation theory." Proc. R. Soc. Edinb. 35, 181-194 (1915). Google Scholar

  • [11] J.M.Whittaker, "Interpolatory Function Theory." Cambridge Tracts in Mathematics and Mathematical Physics, vol. 33. Cambridge University Press, London (1935). Google Scholar

  • [12] M.Caputo, M.Fabrizo, "A new Definition of Fractional Derivative without Singular Kernel." Progr.Fract.Differ.Appl.1(2015)73–85. Google Scholar

  • [13] A.Atangana, B.Saad, T.Alkahtani, "Analysis of the Keller-Segel Modelwith a Fractional Derivativewithout Singular Kernel.", Entropy 17(2015) 4439–4453. CrossrefGoogle Scholar

  • [14] A.Atangana, J.J.Nieto, "Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel", Adv.Mech.Eng. 7(10) (2015) 1–7. Web of ScienceGoogle Scholar

  • [15] A.Atangana, "On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation", Applied Mathematics and Computation, 273 (2016) 948-956 Web of ScienceGoogle Scholar

  • [16] R.Almeida, D.F.M.Torres, "Necessary and suflcient conditions for the fractional calculus of variations with Caputo derivatives." Commun. Nonlinear Sci. Numer. Simul. 16, 1490-1500 (2011). CrossrefGoogle Scholar

  • [17] J.Rashidinia, M.Nabati, "Sinc-Galerkin and Sinc-Collocation methods in the solution of nonlinear two-point boundary value problems.", Computational and Applied Mathematics 32.2 (2013): 315-330. Web of ScienceCrossrefGoogle Scholar

  • [18] A.Mohsen, M.El-Gamel, "A Sinc-Collocation method for the linear Fredholm integro-differential equations." Zeitschrift für angewandte Mathematik und Physik 58, 3 (2007): 380-390. Google Scholar

  • [19] M.El-Gamel, A.Zayed, "Sinc-Galerkin method for solving nonlinear boundary-value problems.", Comput. Math. Appl. 48, 1285- 1298 (2004). CrossrefGoogle Scholar

  • [20] M.Zarebnia, M.Sajjadian, "The sinc-Galerkin method for solving Troesch’s problem", Mathematical and Computer Modelling 56 (2012) 218-228. Google Scholar

About the article

Received: 2015-11-09

Accepted: 2015-11-25

Published Online: 2015-12-16

Citation Information: Open Physics, Volume 13, Issue 1, ISSN (Online) 2391-5471, DOI: https://doi.org/10.1515/phys-2015-0049.

Export Citation

©2015 Ibrahim Emiroglu. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in