Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2017: 0.83

SCImago Journal Rank (SJR) 2017: 0.241
Source Normalized Impact per Paper (SNIP) 2017: 0.537

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Oscillation of fractional order functional differential equations with nonlinear damping

Mustafa Bayram / Hakan Adiguzel / Suleyman Ogrekci
Published Online: 2015-12-31 | DOI: https://doi.org/10.1515/phys-2015-0053

Abstract

In this paper, we are concerned with the oscillatory behavior of a class of fractional differential equations with functional terms. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. Based on a certain variable transformation, by using a generalized Riccati transformation, generalized Philos type kernels, and averaging techniques we establish new interval oscillation criteria. Illustrative examples are also given.

Keywords: fractional derivative; fractional differential equation; Riemann-Liouville derivative; Riccati transformation; oscillation criteria

References

  • [1] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New York (2008) Google Scholar

  • [2] K. Diethelm, A. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, In: F. Keil, W. Mackens, H. Vob, J. Werther (Eds.) Scienti fic Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer, Heidelberg (1999), 217-224 Google Scholar

  • [3] L. Gaul, P. Klein, S. Kempfle, Mech. Syst. Signal Process. 5, 81 (1991) Google Scholar

  • [4] W. Glöckle, T. Nonnenmacher, Biophys. J. 68, 46 (1995) Google Scholar

  • [5] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, In: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Vienna (1997), 291-348 . Google Scholar

  • [6] R. Metzler,W. Schick, H. Kilian, T. Nonnenmacher, J. Chem. Phys. 103, 7180 (1995) Google Scholar

  • [7] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin (2010) Web of ScienceGoogle Scholar

  • [8] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993) Google Scholar

  • [9] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999) Google Scholar

  • [10] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006) Google Scholar

  • [11] D. Delbosco, L. Rodino, J. Math. Anal. Appl. 204, 609 (1996) Google Scholar

  • [12] Z. Bai, H. Lü, J. Math. Anal. Appl. 311, 495 (2005) Google Scholar

  • [13] H. Jafari, V. Daftardar-Gejji, Appl. Math. Comput. 180, 700 (2006) Google Scholar

  • [14] S. Sun, Y. Zhao, Z. Han, Y. Li, Commun. Nonlinear Sci. Numer. Simul. 17, 4961 (2012) Google Scholar

  • [15] M. Muslim, Math. Comput. Model. 49, 1164 (2009) Google Scholar

  • [16] A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010) Google Scholar

  • [17] F. Ghoreishi, S. Yazdani, Comput. Math. Appl. 61, 30 (2011) Google Scholar

  • [18] J. Edwards, N. Ford, A. Simpson, J. Comput. Appl.Math. 148, 401 (2002) Google Scholar

  • [19] L. Galeone, R. Garrappa, J. Comput. Appl.Math. 228, 548 (2009) Google Scholar

  • [20] J. Trigeassou, N.Maamri, J.A. Sabatier, A. Oustaloup, Signal Process. 91, 437 (2011) Google Scholar

  • [21] W. Deng, Nonlinear Anal. 72, 1768 (2010) Google Scholar

  • [22] R.P. Agarwal, S.R. Grace, D. O’Regan, Oscillation Theory for Second Order Linear, Half Linear, Super Linear and Sub Linear Dynamic Equations, Kluwer Academic Publishers, The Netherlands, 672pp. (2002) Google Scholar

  • [23] R.P. Agarwal, M. Bohner, L. Wan-Tong, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker Inc., New York, 376pp. (2004) Google Scholar

  • [24] G. Jumarie, Comput. Math. Appl. 51, 1367 (2006) Google Scholar

  • [25] G. Jumarie, Appl. Math. Lett. 22, 378 (2009) CrossrefGoogle Scholar

  • [26] N. Faraz, Y. Khan, H. Jafari, A. Yildirim, M. Madani, J. King. Saud Univ. 23, 413 (2011) Google Scholar

  • [27] B. Lu, Phys. Lett. A 376, 2045 (2012) Google Scholar

  • [28] Q. Feng, F. Meng, Electr. J. Differ. Equ. 2013, 1 (2013) Google Scholar

  • [29] T. Liu, B. Zheng, F. Meng,Math. Probl. Eng. 2013, 830836 (2013) Google Scholar

  • [30] H. Qin, B. Zheng, Scientific World J. 2013, 685621 (2013) Google Scholar

  • [31] Q. Feng, IAENG IJAM 43, IJAM_43_3_09 (2013) Google Scholar

  • [32] S.M. Guo, L. Mei, Y. Li, Y.F. Sun, Phys. Lett. A 376, 407 (2012) Google Scholar

  • [33] S. Zhang, H. Zhang, Phys. Lett. A 375, 1069 (2011) Google Scholar

  • [34] Y. Huang, F. Meng, Appl. Math. Comput. 199, 644 (2008) Google Scholar

  • [35] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press, Cambridge (1988) Google Scholar

About the article

Received: 2015-11-14

Accepted: 2015-11-27

Published Online: 2015-12-31


Citation Information: Open Physics, Volume 13, Issue 1, ISSN (Online) 2391-5471, DOI: https://doi.org/10.1515/phys-2015-0053.

Export Citation

©2015 M. Bayarm et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in