[1]

Caputo M., Fabrizio M., A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2015, 1, 73-85. Google Scholar

[2]

Losada J., Nieto J.J., Properties of the new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2015, 1, 87-92. Google Scholar

[3]

Odibat Z.M., Momani, S., Application of variational iteration method to nonlinear differential equation of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 2006, 7(1), 27-34.Google Scholar

[4]

Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006.Google Scholar

[5]

Caputo M., Linear models of dissipation whose Q is almost frequency independent, part II, Geophys. J. Int., 1967, 13(5), 529-539.CrossrefGoogle Scholar

[6]

Podlubny L., Fractional Differential Equations, Academic Press, London, 1999.Google Scholar

[7]

Magin R.L., Fractional Calculus in Bioengineering, Begell House, Connecticut, 2006.Google Scholar

[8]

Baleanu D., Guvenc Z.B., Machado J.A.T.(Ed.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer Dordrecht Heidelberg, London New York, 2010. Google Scholar

[9]

Tarasov V.E., Three-dimensional lattice models with long-range interactions of Gr*ü*nwald-Letnikov type for fractional generalization of gradient elasticity, Meccanica, 2016, 51(1), 125-138. CrossrefGoogle Scholar

[10]

Choudhary A., Kumar D., Singh J., Analytical solution of fractional differential equations arising in fluid mechanics by using sumudu transform method, Nonlinear Eng., 2014, 3(3), 133-139. Google Scholar

[11]

Bulut, H., Baskonus H.M., Belgacem F.B.M., The analytical solutions of some fractional ordinary differential equations by sumudu transform method, Abst. Appl. Anal., 2013, Article ID 203875, 6 pages. Google Scholar

[12]

Razminia K., Razminia A., Machado J.A.T., Analytical solution of fractional order diffusivity equation with wellbore storage and skin effects, J. Comput. Nonlinear Dyn., 2016, 11(1), . CrossrefWeb of ScienceGoogle Scholar

[13]

Atangana A., Koca I., On the new fractional derivative and application to nonlinear Baggs and Freedman Model, J. Nonlinear Sci. Appl., 2016, 9, 2467-2480. CrossrefGoogle Scholar

[14]

Atangana A., On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl. Math. Comput., 2016, 273 948-956. Web of ScienceGoogle Scholar

[15]

Singh J., Kumar D., Kilichman A., Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abst. Appl. Anal., 2014, Article ID 535793, 12 pages. Google Scholar

[16]

Singh J., Kumar D., Rathore S., On the solutions of fractional reaction-diffusion equations, Le Matematiche, 2013, 68(1), 23-32. Google Scholar

[17]

Baleanu D., Rezapour S., Salehi S., A fractional finite difference inclusion, J. Comput. Anal. Appl., 2016, 20(5), 834-842. Google Scholar

[18]

Atangana A., Baleanu D., Alsaedi A., Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal, Open Phys., 2016, 14, 145-149. Web of ScienceGoogle Scholar

[19]

Kurt A., Çenesiz Y., Tasbozan O., On the Solution of Burgers’ Equation with the new fractional derivative, Open Phys., 2015, 13 (1), 355-360. Web of ScienceGoogle Scholar

[20]

Tasbozan O., Çenesiz Y., Kurt A., New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method, Eur. Phys. J. Plus, 2016 131 (7), 244. Web of ScienceCrossrefGoogle Scholar

[21]

Atangana A., Baleanu D., New fractional derivatives with nonlocal and non-singular kernel, Theory and application to heat transfer model, Thermal Science, 2016, 20(2), 763-769. CrossrefGoogle Scholar

[22]

Alsaedi A., Baleanu D., Etemad S., Rezapour, S., On coupled systems of time-fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016, Article Number: 4626940, CrossrefWeb of ScienceGoogle Scholar

[23]

Coronel-Escamilla A., Gomez-Aguilar J.F., Baleanu D., Escobar-Jiménez R.F., Olivares-Peregrino V.H., Abundez-Pliego A., Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel, Adv. Difference Equ., 2016, Article Number: 283, . CrossrefWeb of ScienceGoogle Scholar

[24]

Gomez-Aguilar J.F., Morales-Delgado V.F., Taneco-Hernandez M.A., Baleanu D., Escobar-Jiménez, R.F., Al Qurashi M.M., Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local kernels, Entropy, 2016, 18(8), Article Number: 402. Web of ScienceGoogle Scholar

[25]

Gomez-Aguilar J. F., Torres L., Yepez-Martinez H., Baleanu D., Reyes J. M., Sosa, I. O., Fractional Lienard type model of a pipeline within the fractional derivative without singular kernel. 2016, Adv. Difference Equ., Article Number: 173, . CrossrefWeb of ScienceGoogle Scholar

[26]

Doungmo Goufo E.F., Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Mathematical Modelling and Analysis, 2016, 21(2), 188-198. CrossrefGoogle Scholar

[27]

Babolian E., Saeidian J., Analytic approximate solutions to Burgers, Fisher, Huxley equations and two combined forms of these eqautions, Commun. Nonlinear. Sci. Numer. Simulat., 2009, 14, 1984-1992. CrossrefGoogle Scholar

[28]

Fakhari A., Domairry G., Ebrahimpour, Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution, Phys. Lett. A, 2007, 368, 64-68. CrossrefGoogle Scholar

[29]

Inc M., On numerical solution of Burgers equation by homotopy analysis method, Phys. Lett. A, 2008, 372, 356-360. Web of ScienceCrossrefGoogle Scholar

[30]

Song L., Zhang H.Q., Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation, Phys. Lett. A, 2007, 367, 88-94. CrossrefWeb of ScienceGoogle Scholar

[31]

Peng Y., Chen W., A new similarity solution of the Burgers equation with linear damping, Czech. J, Phys., 2008, 56, 317-428. Google Scholar

[32]

Esen A., Yagmurlu N.M., Tasbozan O., Approximate Analytical Solution to Time-Fractional Damped Burger and Cahn-Allen Equations, Appl. Math. Inf. Sci., 2013, 7(5), 1951-1956. CrossrefWeb of ScienceGoogle Scholar

[33]

Hristov J., Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 2016, 20, 757-762. CrossrefWeb of ScienceGoogle Scholar

[34]

Qing Y., Rhoades, B.E., T-stability of Picard iteration in metric spaces, Fixed Point Theory and Applications, 2008, Article ID 418971, 4 pages. Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.