[1]

Li D.F., Cheng C.T., New similarity measure of intuitionistic fuzzy sets and application to pattern recognitions, Pattern Recogn. Lett., 2002, 23, 221-225. CrossrefGoogle Scholar

[2]

Maggini M., Melacci S., Sarti L., Learning from pairwise constraints by similarity neural networks, Neural Networks, 2012, 26, 141-158. CrossrefWeb of ScienceGoogle Scholar

[3]

Bustince H., Barrenechea E., Pagola M., Image thresholding using restricted equivalence functions and maximizing the measures of similarity, Fuzzy Sets Syst., 2007, 158, 496-516. Web of ScienceCrossrefGoogle Scholar

[4]

Chambon S., Crouzil A., Similarity measures for image matching despite occlusions in stereo vision, Pattern Recogn., 2011, 44, 2063-2075.CrossrefWeb of ScienceGoogle Scholar

[5]

Yen C.Y., Cios K.J., Image recognition system based on novel measures of image similarity and cluster validity, Neurocomputing, 2008, 72, 401-412.CrossrefWeb of ScienceGoogle Scholar

[6]

Moghaddam B., Nastar C., Pentland A., A Bayesian similarity measure for deformable image matching, Image Vision Comput., 2001, 19, 235-244. CrossrefGoogle Scholar

[7]

Amigó J.M., Giménez Á., Applications of the min-max symbols of multimodal maps, Appl.Math.Nonlinear Sci., 2016,1,87-98. CrossrefGoogle Scholar

[8]

Guo C.X., Liu X.L., Jin M.Z., Lv Z., The research on optimization of auto supply chain network robust model under macroeconomic fluctuations, Chaos Soliton. Fract., 2015, 89, 105-114. Web of ScienceGoogle Scholar

[9]

Guo C.X., Qiang G., Jin M.Z., Lv Z.H., Dynamic systems based on preference graph and distance, Discrete Cont. Dyn-S., 2015, 8, 1139-1154. CrossrefWeb of ScienceGoogle Scholar

[10]

de A.T.de Carvalho F., Lechevallier Y., de Melo F.M., Partitioning hard clustering algorithms based on multiple dissimilarity matrices, Pattern Recogn., 2012, 45, 447-464. Web of ScienceCrossrefGoogle Scholar

[11]

Egghe L., Rousseau R., Lorenz theory of symmetric relative concentration and similarity, incorporating variable array length, Math. Comput. Model., 2006, 44, 628-639.CrossrefGoogle Scholar

[12]

Gao W., Farahani M.R., Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonlinear Sci., 2016, 1, 99-122.CrossrefGoogle Scholar

[13]

Liu S.H., Yu F.S., Hesitation degree-based similarity measures for intuitionistic fuzzy sets, Int. J. Information and Communication Technology, 2014, 6, 7-22.Google Scholar

[14]

Wu H.L., Zhao B., Overview of current techniques in remote data auditing, Appl. Math. Nonlinear Sci., 2016, 1, 145-158.CrossrefGoogle Scholar

[15]

Ramane H.S., Jummannaver R.B., Note on forgotten topological index of chemical structure in drugs, Applied Mathematics and Nonlinear Sciences, 2016, 1, 369-374. CrossrefGoogle Scholar

[16]

Qian Y.H., Liang J.Y., Dang C.Y., Interval ordered information systems, Comput. Math. Appl., 2008, 56, 1994-2009. CrossrefGoogle Scholar

[17]

Dubois D., Prade H., Gradualness, uncertainty and bipolarity: making sense of fuzzy sets, Fuzzy Sets Syst., 2012, 192, 3-24. Web of ScienceCrossrefGoogle Scholar

[18]

Ban A., Coroianu L., Grzegorzewski P., Trapezoidal approximation and aggregation, Fuzzy Sets Syst., 2011, 177, 45-59. CrossrefWeb of ScienceGoogle Scholar

[19]

de Campos Ibáñez L.M., González Muñoz A., A subjective approach for ranking fuzzy numbers, Fuzzy Sets Syst., 1989, 29, 145-153.CrossrefGoogle Scholar

[20]

Zadeh L.A., Fuzzy sets, Information and Control, 1965, 8, 338-353.CrossrefGoogle Scholar

[21]

Bortolan G., Degani R., A review of some methods for ranking fuzzy subsets, Fuzzy Sets Syst., 1985, 15, 1-19. CrossrefGoogle Scholar

[22]

Zhang Q.S., Jiang S.Y., Jia B.G., Luo S.H., Some information measures for interval-valued intuitionistic fuzzy sets, Inform. Sciences, 2010, 180, 5130-5145. Web of ScienceCrossrefGoogle Scholar

[23]

Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 1986, 20, 87-96. CrossrefGoogle Scholar

[24]

Qian Y.H., Liang J.Y., Song P., Dang C.Y., On dominance relations in disjunctive set-valued ordered information systems, Int. J. Inf. Tech. Decis., 2010, 9, 9-33. CrossrefGoogle Scholar

[25]

Newman M.E.J., Detecting community structure in networks, Eur. Phys.J.B., 2004, 38, 321-330. CrossrefGoogle Scholar

[26]

Rossi L., Torsello A., Hancock E.R., Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence, Phys. Rev. E., 2015, 91, 12 pages. Web of ScienceGoogle Scholar

[27]

Rossi L., Torsello A., Andrea E.R., Attributed graph similarity from the quantum Jensen-Shannon divergence, Lecture Notes in Comput. Sci., 2013, 7953, 204-218. CrossrefGoogle Scholar

[28]

Cason T.P., Absil P.A., Van Dooren P., Iterative methods for low rank approximation of graph similarity matrices, Linear Algebra Appl., 2013, 438, 1863-1882. CrossrefWeb of ScienceGoogle Scholar

[29]

Brandes U., Lerner J., Structural Similarity in Graphs(a relaxation approach for role assignment), Lecture Notes in Comput. Sci., 2005, 3341, 184-195. Google Scholar

[30]

Kpodjedo S., Galinier P., Antoniol G., Using local similarity measures to efficiently address approximate graph matching, Discrete Appl. Math., 2014, 164, part 1, 161-177. Web of ScienceCrossrefGoogle Scholar

[31]

Grewenig S., Zimmer S., Weickert J., Rotationally invariant similarity measures for nonlocal image denoising, J.Vis. Commun. Image. R., 2011, 22, 117-130. CrossrefWeb of ScienceGoogle Scholar

[32]

Hosamani S.M., Correlation of domination parameters with physicochemical properties of octane isomers, Applied Mathematics and Nonlinear Sciences, 2016, 1, 346-352. Google Scholar

[33]

Fernandez M.L., Valiente G., A graph distance metric combining maximum common subgraph and minimum common supergraph, Pattern Recogn. Lett., 2001, 22, 753-758.CrossrefGoogle Scholar

[34]

Bunke H., Shearer K., A graph distance metric based on the maximal common sub-graph, Pattern Recogn. Lett., 1998, 19, 255-259.CrossrefGoogle Scholar

[35]

Chen J., Safro I., A measure of the local connectivity between graph vertices, Procedia Comput. Sci., 2011, 4, 96-205.Google Scholar

[36]

Dehmer M., Emmert-Streib F., Kilian J., A similarity measure for graphs with low computational complexity, Appl. Math. Comput., 2006, 182, 447-459.Google Scholar

[37]

Hidovic D., Pelillo M., Metrics for attributed graphs based on the maximal similarity common subgraph, Int. J. Pattern Recogn., 2004, 18, 299-313.CrossrefGoogle Scholar

[38]

Rupp M., Proschak A.E., Schneider G., Kernel approach to molecular similarity based on iterative graph similarity, J. Chem. Inf. Model., 2007, 47, 2280-2286.CrossrefGoogle Scholar

[39]

Zager L.A., Verghese G.C., Graph similarity scoring and matching, Appl. Math. Lett., 2008, 21, 86-94. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.