[1]

Zhang J., Small M., Complex network from pseudoperiodic time series: topology versus dynamics, Phys. Rev. Lett, 2006, 96, Article ID 238701. Google Scholar

[2]

Zhang J., Sun J.F., Luo X.D., Zhang K., Characterizing pseudoperiodic time series through the complex network approach, Phasica D, 2008, 237, 2856-2865. CrossrefGoogle Scholar

[3]

Xu X.K., Zhang J., Small M., Superfamily phenomena and motifs of networks induced from time series, PNAS, 2008, 105, 19601-19605. CrossrefGoogle Scholar

[4]

Lacasa L., Luque B., Ballesteros F., Luque J., Nuno J.C., From time series to complex networks: The visibility graph, PNAS, 2008, 105, 4972–4975. CrossrefGoogle Scholar

[5]

Luque B., Lacasa L., Ballesteros F., Luque J., Horizontal visibility graphs: Exact results for random time series, Physical Review E, 2009, 80, Article ID 046103. Web of ScienceGoogle Scholar

[6]

Lacasa L., Toral R., Description of stochastic and chaotic series using visibility graphs, Physical Review E, 2010, 82, Article ID 036120. Web of ScienceGoogle Scholar

[7]

Donner R.V., Zou Y., Donges J.F., Marwan N., Kurths J., Recurrence networks – A novel paradigm for nonlinear time series analysis, New Journal of Physics, 2010, 12, Article ID 033025. Web of ScienceGoogle Scholar

[8]

Donges J.F., Donner R.V., Rehfeld K., Marwan N., Trauth M.H., Kurths J., Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis, Processes Geophys., 2011, 18, 545–562. CrossrefWeb of ScienceGoogle Scholar

[9]

Gao Z.K., Zhang X.W., Du M., Jin N.D., Recurrence network analysis of experimental signals from bubbly oil-in-water flows, Physics Letters A, 2013, 377, 457–462. Web of ScienceCrossrefGoogle Scholar

[10]

Gao Z.K., Jin N.D., A directed weighted complex network for characterizing chaotic dynamics from time series, Nonlinear Analysis: Real World Applications, 2012, 13, 947–952. CrossrefWeb of ScienceGoogle Scholar

[11]

Gao Z.K., Yang Y.X., Fang P.C., Jin N.D., Xia C.Y., Hu L.D., Multi-frequency complex network from time series for uncovering oil-water flow structure, Scientific Reports, 2015, 5, 8222. CrossrefWeb of ScienceGoogle Scholar

[12]

Gao Z.K., Zhang X.W., Jin N.D., Marwan N., Kurths J., Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow, Physical Review E, 2013, 88, Article ID 032910. Web of ScienceGoogle Scholar

[13]

Gao Z.K., Fang P.C., Ding M.S., Jin N.D., Multivariate weighted complex network analysis for characterizing nonlinear dynamic behavior in two-phase flow, Experimental Thermal and Fluid Science, 2015, 60, 157-164.Web of ScienceCrossrefGoogle Scholar

[14]

Gao Z.K., Zhang X.W., Jin N.D., Donner R.V., Marwan N., Kurths J., Recurrence network from multivariate signals for uncovering dynamic behavior of horizontal oil-water stratified flows, Europhysics Letters, 2013, 103, Article ID 50004. Google Scholar

[15]

McCullough M., Small M., Stemler T., Ho-Ching Iu H., Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems, Chaos, 2015, 23, Article ID 053101. Web of ScienceGoogle Scholar

[16]

Li X., Yang D., Liu X., Wu X.M., Bridging Time series dynamics and complex network theory with application to electrocardiogram analysis, IEEE Circuits and Systems Magazine, 2012, 12, 33–46. CrossrefWeb of ScienceGoogle Scholar

[17]

Lehnertza K., Ansmanna G., Bialonskia S., Dicktena H., Geiera C., Porza S., Evolving networks in the human epileptic brain, Physica D: Nonlinear Phenomena, 2014, 267, 7–15.CrossrefWeb of ScienceGoogle Scholar

[18]

Kulp C.W., Chobot J.M., Freitas H.R., Sprechini G.D., Using ordinal partition transition networks to analyze ECG data, Chaos, 2016, 26, Article ID 073114. Web of ScienceGoogle Scholar

[19]

Zou Y., Small M., Liu Z.H., Kurths J., Complex network approach to characterize the statistical features of the sunspot series, New Journal of Physics, 2014, 16, Article ID 013051. Web of ScienceGoogle Scholar

[20]

An H.Z., Gao X.Y., Fang W., Huang X., Ding Y.H., The role of fluctuating modes of autocorrelation in crude oil prices, Physica A, 2014, 393, 382–390. Web of ScienceCrossrefGoogle Scholar

[21]

Donner R.V., Donges J.F., Visibility graph analysis of geophysical time series: potentials and possible pitfalls, Acta Geophysica, 2012, 60, 589-623. CrossrefWeb of ScienceGoogle Scholar

[22]

Kantz H., Quantifying the closeness of fractal measures, Physical Review E, 1994, 49, 5091–5097. CrossrefGoogle Scholar

[23]

Casdagli M.C., Recurrence plots revisited, Physica D, 1997, 108, 12–44. CrossrefGoogle Scholar

[24]

Takens F., Detecting strange attractors in turbulence, Lecture Notes in Mathematics, 1981, 898, 366–381. CrossrefGoogle Scholar

[25]

Marwan N., Romano M. C., Thiel M., Kurths J., Recurrence plots for the analysis of complex systems, Physics Reports, 2007, 438, 237–329. CrossrefWeb of ScienceGoogle Scholar

[26]

Watts D.J., Strogatz S.H., Collective dynamics of small-world networks, Nature, 1998, 393, 440-442. CrossrefGoogle Scholar

[27]

Latora V., Marchiori M., Efficient Behavior of Small-World Networks, Phys. Rev. Lett, 2001, 87, Article ID 198701. Google Scholar

[28]

Newman M.E.J., Fast algorithm for detecting community structure in networks, Physical Review E, 2004, 69, Article ID 066133. Google Scholar

[29]

Newman M.E.J., Girvan M., Finding and evaluating community structure in networks, Physical Review E, 2004, 69, Article ID 26113. Google Scholar

[30]

Drosopoulos A., Defence Research Establishment Ottawa, Description of the OHGR database, 1994, Tech. Note No. 94-14, 1-30. Google Scholar

[31]

Haykin S., Puthusserypady S., Chaotic dynamics of sea clutter, Chaos, 1997, 7, 777–802.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.