[1]

Farahani M.R., Jamil M.K., Imran M., Vertex *PI*_{v} topological index of titania carbon nanotubes *TiO*_{2}(*m*, *n*), Appl. Math. Nonl. Sc., 2016, 1, 175-182. Google Scholar

[2]

Jamil M.K., Farahani M.R., Imran M., Malik M.A., Computing eccentric version of second Zagreb index of polycyclic aromatic hydrocarbons (PAHk), Appl. Math. Nonl. Sc., 2016, 1, 247-252. Google Scholar

[3]

Gao W., Wang W.F., The eccentric connectivity polynomial of two classes of nanotubes, Chaos, Soliton. Fract., 2016, 89, 290-294. Web of ScienceCrossrefGoogle Scholar

[4]

Gao W., Wang W.F., Farahani M.R., Topological indices study of molecular structure in anticancer drugs, J. Chem., 2016, http://dx.doi.org/10.1155/2016/3216327. Web of Science

[5]

Gao W., Farahani M.R., Shi L., Forgotten topological index of some drug structures, Acta Medica Mediterr., 2016, 32, 579-585.Google Scholar

[6]

Gao W., Wang W.F., The fifth geometric arithmetic index of bridge graph and carbon nanocones, J. Differ. Equ. Appl., 2017, http://dx.doi.org/10.1080/10236198.2016.1197214.Web of Science

[7]

Gao W., Wang W.F., Jamil M.K., Farahani M.R., Electron energy studying of molecular structures via forgotten topological index computation, J. Chem., 2016, http://dx.doi.org/10.1155/2016/1053183. Web of Science

[8]

Gao W., Wang W.F., Second atom-bond connectivity index of special chemical molecular structures, J. Chem., 2014, http://dx.doi.org/10.1155/2014/906254. Web of Science

[9]

Gao W., Wang W.F., The vertex version of weighted wiener number for bicyclic molecular structures, Computational and Mathematical Methods in Medicine, 2015, http://dx.doi.org/10.1155/2015/418106. Web of Science

[10]

Bondy J.A., Murty U.S.R., Graph theory, Spring Press, Berlin, 2008. Google Scholar

[11]

Estrada E., Torres L., Rodrí guez L., Gutman I., An atombond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. A, 1998, 37, 849-855. Google Scholar

[12]

Vukić ević D., Furtula B., Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 2009, 46, 1369-1376. Web of ScienceCrossrefGoogle Scholar

[13]

Zhou B., Gutman I., Furtulab B., Dua Z.B., On two types of geometric-rithmetic index, Chem. Phys. Lett., 2009, 482, 153-155. CrossrefGoogle Scholar

[14]

Rodrí guez J.M., Sigarreta J.M., On the geometric-rithmetic index, MATCH Commun. Math. Comput. Chem., 2015, 74, 103-120. Google Scholar

[15]

Rodrí guez J.M., Sigarreta J.M., Spectral properties of geometric-arithmetic index, Appl. Math. Comput., 2016, 277, 142-153. Google Scholar

[16]

Rodrí guez J.M., Sigarreta J.M., Spectral study of the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem., 2015, 74, 121-135. Google Scholar

[17]

Husin M.N., Hasni R., Imran M., Kamarulhaili H., The edge version of geometric arithmetic index of nanotubes and nanotori, Optoelectron. Adv. Mat., 2015, 9, 1292-1300. Google Scholar

[18]

Bahrami A., Alaeiyan M., Fifth geometric-arithmetic index of H-naphtalenic nanosheet [4*n*, 2*m*], J. Comput. Theor. Nanos., 2015, 12, 689-690. CrossrefGoogle Scholar

[19]

Sigarreta J.M., Bounds for the geometric-arithmetic index of a graph, Miskolc Math. Notes, 2015, 16, 1199-1212. CrossrefGoogle Scholar

[20]

Divnic T., Milivojevic M., Pavlovic L., Extremal graphs for the geometric-arithmetic index with given minimum degree, Discrete Appl. Math., 2014, 162, 386-390. CrossrefWeb of ScienceGoogle Scholar

[21]

Das, K.C., Trinajstic N., Comparison between geometric-arithmetic indices, Croat. Chem. Acta, 2012, 85, 353-357. CrossrefWeb of ScienceGoogle Scholar

[22]

Mahmiani A., Khormali O., Iranmanesh A., On the edge version of geometric-arithmetic index, Dig. J. Nanomater. Bios., 2012, 7, 411-414. Google Scholar

[23]

Fath-Tabar G.H., Hossein-Zadeh S., Hamzeh A., On the first geometric-arithmetic index of product graphs, Utliltas Mathematica, 2011, 86, 279-287. Google Scholar

[24]

Fath-Tabar G., Furtula B., Gutman I., A new geometric-arithmetic index, J. Math. Chem., 2010, 47, 477-486. CrossrefGoogle Scholar

[25]

Das K.Ch., Gutman I., Furtula B., On the first geometric-arithmetic index of graphs, Discrete Appl. Math., 2011, 159, 2030-2037. Web of ScienceCrossrefGoogle Scholar

[26]

Gutman I., Furtula B., Estimating the second and third geometric-arithmetic indices, Hacet. J. Math. Stat., 2011, 40, 69-76. Google Scholar

[27]

Furtula B., Gutman I., Relation between second and third geometric-arithmetic indices of trees, J. Chemometr., 2011, 25, 87-91. CrossrefWeb of ScienceGoogle Scholar

[28]

Shabani H., Ashrafi A.R., Gutman I., Geometric-arithmetic index: an algebraic approach, Stud. Univ. Babes-Bol., 2010, 55, 107-112. Google Scholar

[29]

Lee D.W., Upper and lower bounds of the fourth geometric-arithmetic index, AKCE Int. J. Graphs Comb., 2013, 10, 69-76. Google Scholar

[30]

Ranjini P.S., Lokesha V., Eccentric connectivity index, hyper and reverse-wiener indices of the subdivision graph, General Mathematics Notes, 2011, 2, 34-46. Google Scholar

[31]

Morgan M.J., Mukwembi S., Swart H.C., On the eccentric connectivity index of a graph, Discrete Math., 2011, 311, 1229-1234. Web of ScienceCrossrefGoogle Scholar

[32]

Hua H., Das K.C., The relationship between the eccentric connectivity index and Zagreb indices, Discrete Appl. Math., 2013, 161, 2480-2491. Web of ScienceCrossrefGoogle Scholar

[33]

De N., On eccentric connectivity index and polynomial of thorn graph, Applied Mathematics, 2012, 3, 931-934. CrossrefGoogle Scholar

[34]

Eskender B., Vumar E., Eccentric connectivity index and eccentric distance sum of some graphs operations, Transactions on Combinatorics, 2013, 2, 103-111. Google Scholar

[35]

Ilić A., Gutman I., Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem., 2011, 65, 731-744. Google Scholar

[36]

Iranmanesh M., Hafezieh R., The eccentric connectivity index of some special graphs, Iranian Journal of Mathematical Chemistry, 2011, 2, 61-65. Google Scholar

[37]

Dankelmann P., Morgan M.J., Mukwembi S., Swart H.C., On the eccentric connectivity index and wiener index of a graph, Quaest. Math., 2014, 37, 39-47. CrossrefWeb of ScienceGoogle Scholar

[38]

Morgan M.J., Mukwembi S., Swart H.C., A lower bound on the eccentric connectivity index of a graph, Discrete Appl. Math., 2012, 160, 248-258. CrossrefWeb of ScienceGoogle Scholar

[39]

Rao N.P., Lakshmi K., Eccentric connectivity index of V-phenylenic nanotubes, Dig. J. Nanomater. Bios., 2010, 6, 81-87. Google Scholar

[40]

Ediz S., Reverse eccentric connectivity index, Optoelectron. Adv. Mat., 2012, 6, 664-667. Google Scholar

[41]

Nejati A., Mehdi A., On reverse eccentric connectivity index of one tetragonal carbon nanocones, Journal of Theoretical and Computational Science, 2014, http://dx.doi.org/10.4172/jtco.1000115.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.