[1]

Nishar A., Richards S., Breen D., Robertson J., Breen B., Thermal Infrared Imaging of Geothermal Environments and by an Unmanned Aerial Vehicle (UAV): A Case Study of the Wairakei - Tauhara Geothermal Field, Taupo, New Zealand, Renew Energ, 2016, 86, 1256-1264. Google Scholar

[2]

Xu J., Cai C.X., Cai G.W., Zou Y., Robust H-Infinity Control for Miniature Unmanned Aerial Vehicles at Hover by the Finite Frequency Strategy, IET Control Theory A, 2016, 10, 190-200. Web of ScienceCrossrefGoogle Scholar

[3]

Kim H., Hyun O.T., Kwon S., Simple Catalyst Bed Sizing of A NaBH4 Hydrogen Generator with Fast Startup for Small Unmanned Aerial Vehicles, Int J Hydrogen Energ, 2016, 41, 1018-1026. Web of ScienceCrossrefGoogle Scholar

[4]

Goncalves J., Henriques R., Alves P., Rita S.S., Monteiro A.T., Lomba A., Marcos B., Honrado J., Evaluating an Unmanned Aerial Vehicle-Based Approach for Assessing Habitat Extent and Condition in Fine-Scale Early Successional Mountain Mosaics, Appl Veg Sci, 2016, 19, 132-146. Web of ScienceCrossrefGoogle Scholar

[5]

Dong X.W., Zhou Y., Ren Z., Zhong Y.S., Time-Varying Formation Control for Unmanned Aerial Vehicles with Switching Interaction Topologies, Control Eng Pract, 2016, 46, 26-36. Web of ScienceCrossrefGoogle Scholar

[6]

Martin P.G., Payton O.D., Fardoulis J.S., Richards D.A., Yamashiki Y., Scott T.B., Low Altitude Unmanned Aerial Vehicle for Characterising Remediation Effectiveness Following the FDNPP Accident, J Environ Radioactiv, 2016, 151, 58-63. Web of ScienceCrossrefGoogle Scholar

[7]

Wang D.J., Chen L., Wu J., Novel In-flight Coarse Alignment of Low-cost Strapdown Inertial Navigation System for Unmanned Aerial Vehicle Applications, T Jpn Soc Aeronaut S, 2016, 59,10-17. CrossrefGoogle Scholar

[8]

Moreno A.I., Jarzabek A., Gonzalez M.A., Perales J.M., Optimizing Multidisciplinary Scaled Tests in Terrestrial Atmosphere for Extraterrestrial Unmanned Aerial Vehicle Missions, P I Mech Eng G-j Aer, 2016, 230, 77-89. Web of ScienceGoogle Scholar

[9]

Gaxiola L.N., Diaz-Ramirez V.H., Tapia J.J., Garcia-Martinez Pascuala, Target Tracking with Dynamically Adaptive Correlation, Opt Commun, 2016, 365, 140-149. CrossrefGoogle Scholar

[10]

Wu W.H., Jiang J., Liu W.J., Feng X., Gao L., Qin X., Augmented State GM-PHD Filter with Registration Errors for Multi-Target Tracking by Doppler Radars, Signal Process, 2016, 120, 117-128. Web of ScienceCrossrefGoogle Scholar

[11]

Zhang H.Q., Ge H.W., Yang J.L., Yuan Y.H., A GM-PHD Algorithm for Multiple Target Tracking Based on False Alarm Detection with Irregular Window, Signal Process, 2016, 120, 537-552. Web of ScienceCrossrefGoogle Scholar

[12]

He Y.J., Li M., Zhang J.L., Yao J.P., Infrared Target Tracking Based on Robust Low-Rank Sparse Learning, IEEE Geosci Remote S, 2016, 13, 232-236. Web of ScienceCrossrefGoogle Scholar

[13]

Gostar A.K., Hoseinnezhad R., Alireza B.H., Multi-Bernoulli Sensor-Selection for Multi-Target Tracking with Unknown Clutter and Detection Profiles, Signal Process, 2016, 119, 28-42. CrossrefWeb of ScienceGoogle Scholar

[14]

Li D., Hou C.P., Yi D.Y., Multi-Bernoulli Smoother for Multi-target Tracking, Aerosp Sci Technol, 2016, 48, 234-245. Web of ScienceCrossrefGoogle Scholar

[15]

Yi Y., Mo Z.W., Tan J.W., A Novel Hierarchical Data Association with Dynamic Viewpoint Model for Multiple Targets Tracking, J Vis Commun Image R, 2016, 34, 37-49. Web of ScienceCrossrefGoogle Scholar

[16]

Conte G., Capua G.P., Scaradozzi D., Designing the NGC System of a Small ASV for Tracking Underwater Targets, Robot Auton Syst, 2016, 76, 46-57. CrossrefWeb of ScienceGoogle Scholar

[17]

Ez-Zaidi A., Rakrak S., A Comparative Study of Target Tracking Approaches in Wireless Sensor Networks, J Sensor, 2016, Article NO 3270659. Google Scholar

[18]

Kumar D.R., Rao S.K., Raju K.P., Integrated Unscented Kalman Filter for Underwater Passive Target Tracking with Towed Array Measurements, Optik, 2016, 127, 2840-2847. CrossrefWeb of ScienceGoogle Scholar

[19]

Chaudhary G., Sinha A., Tripathy T., Borkar A., Conditions for Target Tracking with Range-Only Information, Robot Auton Syst, 2016, 75, 176-186. Web of ScienceCrossrefGoogle Scholar

[20]

Vasuhi S., Vaidehi V., Target tracking using Interactive Multiple Model for Wireless Sensor Network, Inform Fusion, 2016, 27, 41-53. CrossrefWeb of ScienceGoogle Scholar

[21]

Zhang Q., Zhang C.J., Liu M.Q., Zhang S.L., Local Node Selection for Target Tracking based on Underwater Wireless Sensor Networks, Int J Syst Sci, 2015, 46, 2918-2927. Web of ScienceCrossrefGoogle Scholar

[22]

Yuan C.S., Wang J., Lei P., Bi Y.X., Sun Z.S., Multi-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate, Sensors, 2015, 15, 30385-30402. Web of ScienceCrossrefGoogle Scholar

[23]

Zhang H.Q., Ge H.W., Yang J.L., Adaptive Gaussian mixture probability hypothesis density for tracking multiple targets, OPTIK, 2016, 127, 3918-3924. Web of ScienceCrossrefGoogle Scholar

[24]

Yang W., Fu Y.W., Li X., Joint detection, tracking and classification of multiple maneuvering targets based on the linear Gaussian jump Markov probability hypothesis density filter, Opt Eng, 2013, 52, AR 083106.Web of ScienceGoogle Scholar

[25]

Lim Y.C., Kim J.H., Lee C.H., Lee M., Stereo-Based Tracking-by-Multiple Hypotheses Framework for Multiple Vehicle Detection and Tracking, Int J Adv Robot Syst, 2013, 10, AR 293. Web of ScienceGoogle Scholar

[26]

María R., María L.G., Multiplier method and exact solutions for a density dependent reaction-diffusion equation, Appl Math Nonlin Sci, 2016, 1, 311-320. Google Scholar

[27]

Francisco B., On problems of Topological Dynamics in non-autonomous discrete systems, Appl Math Nonlin Sci, 2016, 1, 391-404. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.