[1]

Mittal R.C., Dahiya S., et al., Numerical simulation on hyperbolic diffusion equations using modified cubic B-spline differential quadrature methods, Computers and Mathematics with Applications, 2015, 70.5, 737-749. Google Scholar

[2]

Zhao S., Ovadia J., Liu X., Zhang Y.T., Nie Q., et al., Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems, J. Comput. Phys., 2011, 230(15), 5996-6009. CrossrefGoogle Scholar

[3]

Marek M., and Schreiber I., Chaotic behaviour of deterministic dissipative systems (Vol. 1). Cambridge University Press, 1995. Google Scholar

[4]

Nicolis G., and Prigogine I., Self-organization in nonequilibrium systems (Vol. 191977). Wiley, New York, 1977. Google Scholar

[5]

Ersoy O., Daĝ I., et al., Numerical solutions of the reaction diffusion system by using exponential cubic B-spline collocation algorithms. Open Phys., 2015, 13: 414-427. Google Scholar

[6]

Cherruault Y., Choubane M., Valleton J.M., Vincent J.C., et al., Stability and asymptotic behavior of a numerical solution corresponding to a diffusion-reaction equation solved by a finite difference scheme (Crank-Nicolson), Computers and Mathematics with Applications, 1990, 20(11), 37-46. CrossrefGoogle Scholar

[7]

Turing A.M., The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 237(641), 1952, 37-72. CrossrefGoogle Scholar

[8]

Lefever R., Nicolis G., et al., Chemical instabilities and sustained oscillations, Journal of theoretical Biology, 1971, 30(2), 267-284. CrossrefGoogle Scholar

[9]

Twizell E.H., Gumel A.B., Cao Q., et al., A second-order scheme for the Brusselator reaction–diffusion system, J. Math. Chem., 1999, 26(4), 297-316. CrossrefGoogle Scholar

[10]

Adomian G., The diffusion-Brusselator equation. Computers and Mathematics with Applications, 1995, 29(5), 1-3. CrossrefGoogle Scholar

[11]

Cherruault Y., Choubane M., Valleton J.M., Vincent J.C., et al., Stability and asymptotic behavior of a numerical solution corresponding to a diffusion–reaction equation solved by a finite difference scheme (Crank–Nicolson Scheme), Comput. Math. Appl., 1990, 20 (11), 37-46. CrossrefGoogle Scholar

[12]

http://www.worthington-biochem.com/introbiochem/substrateconc.html

[13]

L.G. Harrison, Kinetic Theory of Living Pattern, Cambridge University Press, 1993. Google Scholar

[14]

Sherratt J.A., Murray J.D., et al., Models of epidermal wound healing, Proc. R. Soc. Lond. B, 1990, 241, 29-36.. CrossrefGoogle Scholar

[15]

Chaplain M.A.J., Reaction-diffusion pre-patterning and its potential role in tumour invasion, J. Bio. Systems, 1995, 3, 929-936. CrossrefGoogle Scholar

[16]

Murray J.D., Stanley E.A., Brown D.L., et al., On the Spatial Spread of Rabies among Foxes, Proc. R. Soc. Lond. B, 1986, 229, 111-150. CrossrefGoogle Scholar

[17]

Holmes E.E., Lewis M.A., Banks J.E., Veit R.R., et al., Spatial Interactions and Population Dynamics, Ecology, 1994, 75(1), 17–29. CrossrefGoogle Scholar

[18]

Burgers J.M., A mathematical model illustrating the theory of turbulence, Advances in applied mechanics, 1948, 1, 171-199. CrossrefGoogle Scholar

[19]

Khater A.H., Temsah R.S., Hassan M.M., et al., A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math., 2008, 222(2), 333-350. CrossrefGoogle Scholar

[20]

Ames W.F. (Ed.). Nonlinear partial differential equations in engineering (Vol. 1). Academic press, 1965. Google Scholar

[21]

Karpman V.I. Non-Linear Waves in Dispersive Media: International Series of Monographs in Natural Philosophy (Vol. 71). Elsevier, 2016. Google Scholar

[22]

Ali A., Haq S., et al., A computational meshfree technique for the numerical solution of the two-dimensional coupled Burgers’ equations, International Journal for Computational Methods in Engineering Science and Mechanics, 2009, 10(5), 406-422. CrossrefGoogle Scholar

[23]

Perko J., Sarler B., et al., Weight function shape parameter optimization in meshless methods for non-uniform grids, Computer Modeling in Engineering and Sciences, 19(1), 2007, 55. Google Scholar

[24]

Nee J., Duan J., et al., Limit set of trajectories of the coupled viscous Burgers’ equations. Applied mathematics letters, 1998, 11(1), 57-61. CrossrefGoogle Scholar

[25]

Zhang W, Zhang C.H., Guang X., et al., An explicit Chebyshev pseudospectral multigrid method for incompressible Navier–Stokes equations. Computers and Fluids, 2010, 39, 1, 178-188. CrossrefGoogle Scholar

[26]

Dogan A., A Galerkin finite element approach to Burgers’ equation. Appl. Math. Comput., 2004, 157(2), 331-346. Google Scholar

[27]

Kumar Pany A., Nataraj, N., Singh, S., et al., A new mixed finite element method for Burgers’ equation, Journal of Applied Mathematics and Computing, 2007, 23(1-2), 43-55. CrossrefGoogle Scholar

[28]

Golmankhaneh A.K., Khatuni T., Porghoveh N.A., Baleanu D., et al,. Comparison of iterative methods by solving nonlinear Sturm-Liouville, Burgers and Navier-Stokes equations, Central European Journal of Physics, 2012, 10(4), 966-976. Google Scholar

[29]

Asaithambi A., et al., Numerical solution of the Burgers’ equation by automatic differentiation, Appl. Math. Comput., 2010, 216, 2700-2708. Google Scholar

[30]

Bellman R., Kashe B.G., Casti J., et al., Differential quadrature: a technique for the rapid solution of non-linear partial differential equations, J. Comput. Phys., 1972, 10, 40-52. CrossrefGoogle Scholar

[31]

Shu C., Differential Quadrature and its Application in Engineering, Athenaeum Press Ltd., Great Britain, 2000. Google Scholar

[32]

Quan J.R., Chang C.T., et al., Newinsights in solving distributed system equations by the quadrature methods, I. Comput. Chem. Eng., 1989, 13, 779 - 788. CrossrefGoogle Scholar

[33]

Quan J.R., Chang C.T., et al., Newinsights in solving distributed system equations by the quadrature methods-II, Comput. Chem. Eng., 1989, 13, 1017-1024. CrossrefGoogle Scholar

[34]

Korkmaz A., Daĝ I., et al., Shock wave simulations using Sinc DQM, Eng. Comput., 2011, 28(6), 654 - 674. CrossrefGoogle Scholar

[35]

Korkmaz A., Daĝ, I., et al., A differential quadrature algorithm for nonlinear Schrödinger equation. Nonlinear Dynamics, 2009, 56(1-2), 69-83. CrossrefGoogle Scholar

[36]

Mittal R.C., Jiwari R., Sharma K.K., et al., A numerical scheme based on differential quadrature method to solve time dependent Burgers’ equation. Engineering Computations, 2012, 30(1), 117-131. CrossrefGoogle Scholar

[37]

Tomasiello S., Solving 2D-wave problems by the iterative differential quadrature method, Int. J. Comput. Math., 2011, 88(12), 2550-2566. Google Scholar

[38]

Tomasiello S., Stability and accuracy of the iterative differential quadrature method. International journal for numerical methods in engineering, 2003, 58(9), 1277-1296. CrossrefGoogle Scholar

[39]

Tomasiello S., Numerical solutions of the Burgers-Huxley equation by the IDQ method, Int. J. Comput. Math, 2010, 87(1), 129-40.CrossrefGoogle Scholar

[40]

Tomasiello S., Numerical stability of DQ solutions of wave problems, Numerical Algorithms, 2011, 57(3), 289-312. CrossrefGoogle Scholar

[41]

Korkmaz A., Numerical algorithms for solutions of Korteweg-de Vries equation. Numer. Methods Partial Differential Equations, 2010, 26(6), 1504-1521. Google Scholar

[42]

Arora G., Singh B.K., et al., Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method, Applied Mathematics and Computation, 2013, 224, 166-177. CrossrefGoogle Scholar

[43]

Jiwari R., Yuan J., et al., A computational modeling of two dimensional reaction–diffusion Brusselator system arising in chemical processes, 2014, 52(6), 1535-1551. Google Scholar

[44]

Bashan A., Karakoc S.B.G., Geyikli T., et al., Approximation of the KdVB equation by the quintic B-spline differential quadrature method, Kuwait Journal of Science, 2015, 42(2). Google Scholar

[45]

Korkmaz A., Daĝ I., et al., Quartic and quintic B-spline methods for advection-diffusion equation, Appl. Math. Comput., 2016, 274, 201-219. Google Scholar

[46]

Krowick A., Hermite type radial basis finction-based differential quadrature method for higher order equations, Applied Mathematical modelling, 2016, 40(3), 2421-2430.CrossrefGoogle Scholar

[47]

Barrera D., Gonzàlez P., Ibàñez F., Ibàñez M.J., et al., A general soline differential quadrature method based on quasi-interpolation, J Comput. Appl. Math., 2015, 275, 465-479. CrossrefGoogle Scholar

[48]

Shukla H.S., Tamsir M., Srivastava V.K., Kumar J., et al., Numerical solution of two dimensional coupled viscous Burger equation using modified cubic B-spline differential quadrature method, AIP Advances, 2014, 4, 117-134. Google Scholar

[49]

Shukla H.S., Tamsir M., Srivastava V.K., et al., Numerical simulation of two dimensional sine-Gordon solitons using modified cubic B-spline differential quadrature method, AIP Advances, 2015, 5, 017121.CrossrefGoogle Scholar

[50]

Shukla H.S., Tamsir M., Srivastava V.K., Rashidi M. M. et al., Modified cubic B-spline differential quadrature method for numerical solution of three-dimensional coupled viscous Burger equation, Modern Physics Letters B 30(11), Modern Physics Letters B, 2016, 30(11), 16501 10-27. Google Scholar

[51]

Mittal R.C., Jain R.K., et al., Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method, Appl. Math. Comput., 2012, 218, 7839-7855. Google Scholar

[52]

Korkmaz A., Daĝ I., Cubic B-spline differential quadrature method for advection-diffusion equations. International Journal of Numerical Methods for Heat and Fluid flow, 2012, 22(8), 1021-1036. CrossrefGoogle Scholar

[53]

Korkmaz A., Akmaz H.K., et al., Numerical simulations for transport of conservative pollutants, Selcuk Journal of Applied Mathematics, 2015, 16(1). Google Scholar

[54]

Jain M.K., Numerical Solution of Differential Equations, 2nd ed., Wiley, New York, NY, 1983. Google Scholar

[55]

Ruuth S.J., and Spiteri R.J., et al., A new class of optimal high-order strongstability-preserving time-stepping schemes, SIAM J. Numer. Anal., 2002, 40 (2), 469-491. CrossrefGoogle Scholar

[56]

Shu C., Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 1988, 9, 1073-1084. CrossrefGoogle Scholar

[57]

Ruuth S.J., Spiteri R.J., et al., Two barriers on strong-stability-preserving time discretization methods, J. Sci. Comp., 2002, 17, 211-220. CrossrefGoogle Scholar

[58]

Stenger F., Numerical methods based on Wittaker cardinal or sinc functions, SIAM Review, 1983, 23, 165-224.Google Scholar

[59]

Bhatt H.P., Khaliq A.Q.M., et al., The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction–diffusion systems, J. Comput. Appl. Math., 2015, 285, 256 - 278. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.